Please wait a minute...
金属学报  2014, Vol. 50 Issue (7): 871-878    DOI: 10.3724/SP.J.1037.2013.00801
  论文 本期目录 | 过刊浏览 |
基于软化机制的TC18钛合金本构关系研究*
梁后权, 郭鸿镇, 宁永权, 姚泽坤, 赵张龙
(西北工业大学材料学院, 西安 710072)
ANALYSIS ON THE CONSTITUTIVE RELATIONSHIP OF TC18 TITANIUM ALLOY BASED ON THE SOFTENING MECHANISM
LIANG Houquan, GUO Hongzhen, NING Yongquan, YAO Zekun, ZHAO Zhanglong
School of Materials Science and Engineering, Northwestern Polytechnical University, Xi′an 710072
全文: PDF(1580 KB)   HTML
摘要: 

通过TC18钛合金热模拟压缩实验, 得到不同变形条件下的高温变形真应力-真应变曲线. 通过加工硬化和动态软化效应, 分析变形参数变化对TC18钛合金应力-应变曲线形态和峰值应力的影响. 不同变形条件下, TC18钛合金流变曲线呈现出相似的特征, 而峰值应力对变形参数的变化却十分敏感. 通过Poliak-Jonas准则, 分析了不同条件下TC18钛合金在高温变形过程中的软化机制. 相同温度下, 动态再结晶机制主要发生在低应变速率下的高温变形过程中, 并且软化机制的选择对温度不敏感. 基于传统的Arrhenius型方程, 针对TC18钛合金热变形过程中不同的软化机制, 分别建立动态再结晶和动态回复机制下的本构方程. 针对识别出的TC18合金在不同变形条件下的软化机制, 通过适用的本构模型来描述TC18合金在应变为0.7时真实应力对变形温度、应变速率的响应过程. 以动态再结晶为主要软化机制的变形过程, 其变形激活能和应变速率敏感系数远远大于以动态回复为主的过程.

关键词 TC18钛合金动态软化机制本构关系高温变形    
Abstract:The true stress-true strain curves have been attained through the isothermal compression experiment of TC18 titanium alloy. The influence of deformation parameters on the shape of stress-strain curves and peak stress has been analyzed through the working-hardening and dynamic softening effects. The true stress-true strain curves show the similar characteristics under different deformation conditions. However, the peak stress is sensitive to the changes of deformation parameters. The type of dynamic softening mechanisms in hot deformation under certain conditions can be obtained through Poliak-Jonas criterion. The dynamic recrystallization process tends to take place during the deformation with lower strain rates. And the choice of the dynamic softening mechanisms is not sensitive to deformation temperatures. The suitable constitutive models under different softening mechanisms have been constructed based on the traditional Arrhenius equations. With the identification of the dynamic softening mechanisms in hot deformation of TC18 alloy with different conditions, the response of true stress, at strain of 0.7, to the deformation temperatures and strain rates can be described through the proposed models. And the sensitivity coefficient of strain rates and deformation activation energy, of the process with the dynamic recrystallization as the major softening mechanism, are much larger than the ones of process with dynamic recovery.
Key wordsTC18 titanium alloy    softening mechanism    constitutive model    high-temperature deformation
收稿日期: 2013-12-09     
ZTFLH:  TG301  
Corresponding author: GUO Hongzhen, professor, Tel: (029)88492642, E-mail: hzguo@nwpu.edu.cn   
作者简介: 梁后权, 男, 1991年生, 硕士生

引用本文:

梁后权, 郭鸿镇, 宁永权, 姚泽坤, 赵张龙. 基于软化机制的TC18钛合金本构关系研究*[J]. 金属学报, 2014, 50(7): 871-878.
LIANG Houquan, GUO Hongzhen, NING Yongquan, YAO Zekun, ZHAO Zhanglong. ANALYSIS ON THE CONSTITUTIVE RELATIONSHIP OF TC18 TITANIUM ALLOY BASED ON THE SOFTENING MECHANISM. Acta Metall Sin, 2014, 50(7): 871-878.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00801      或      https://www.ams.org.cn/CN/Y2014/V50/I7/871

[1] Moiseyer V N. Titanium Alloys-Russian Aircraft and Aerospace Applications. London: Taylor & Francis Group, 2005: 46
[2] Semiatin S L, Seetharaman V, Weiss I. Mater Sci Eng, 1999; A263: 257
[3] Bruschi S, Poggio S, Quadrini F. Mater Lett, 2004; 58: 3622
[4] Sumantra M, Rakesh V, Sivaprasad P V. Mater Sci Eng, 2007; A500: 114
[5] Cui J H, Yang H, Sun Z C. Rare Metall Mater Eng, 2012; 41: 0397
[6] Li X L. PhD Dissertation, Northwestern Polytechnical University, Xi′an, 2005
(李晓丽. 西北工业大学博士学位论文, 西安, 2005)
[7] Sha W, Savko M. Titanium Alloys: Modelling of Microstructure, Properties and Applications. Cambridge: Woodhead Publishing, 2009: 265
[8] Jia B, Peng Y. Acta Metall Sin, 2011; 47: 507
(贾 斌, 彭 艳. 金属学报, 2011; 47: 507)
[9] Zhang W F, Li X L, Sha W, Yan W, Wang W, Shan Y Y, Yang K. Mater Sci Eng, 2014; A590: 199
[10] Roberts W, Ahlblom B. Acta Metall, 1978; 26: 801
[11] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd Ed., Oxford: Elsevier, 2004: 431
[12] Wang B, Guo H Z, Yao Z K. Forg Stamp Technol, 2006; (6): 106
(王 斌, 郭鸿镇, 姚泽坤. 锻压技术, 2006; (6): 106)
[13] Ouyang D L, Lu S Q, Cui X. J Aero Mater, 2010; 30(2): 17
(欧阳德来, 鲁世强, 崔 霞. 航空材料学报, 2010; 30(2): 17)
[14] Fernández A I, Uranga P, López B, Rodriguez-Ibabe J M. Mater Sci Eng, 2003; A361: 367
[15] Taylor A S, Hodgson P D. Mater Sci Eng, 2011; A528: 3310
[16] McQueen H J, Sue Y, Ryan N D, Fry E J. Mater Process Technol, 1995; 53: 293
[17] Poliak E I, Jonas J J. Acta Mater, 1996; 44: 127
[18] Miura H, Sakai T, Mogawa R, Gottstein G. Scr Mater, 2004; 51: 671
[19] Chen X R, Li H X, Ge M Q, Chen Y H, Hu Y S. Acta Metall Sin, 1997; 33: 1275
(程晓茹, 李虎兴, 葛懋琦, 陈贻宏, 胡衍生. 金属学报, 1997; 33: 1275)
[20] Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J. Scr Mater, 2014; 72-73: 1
[21] Sellars C M, Tegart W J M. Mem Sci Rev Met, 1966; 63: 731
[22] Gottstein G, Kocks U F. Acta Meter, 1983; 31: 175
[23] Mahoney M W. Materials Properties Handbook: Titanium Alloys. Materials Park: ASM International, 1994: 154
[24] Gottstein G, Shvindlerman L S. Grain Boundary Migration in Metals. Boca Raton: CRC Press, 2010: 211
[25] Mao P L, Yang K, Su G Y. Acta Metall Sin, 2001; 37: 40
(毛萍莉, 杨 柯, 苏国跃. 金属学报, 2001; 37: 40)
[26] Sellars C M, Whiteman J A. Acta Meter, 1979; 13: 187
[27] Sargent P M, Ashby M F. Scr Mater, 1982; 16: 1415
[1] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[2] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[3] 赵燕春, 孙浩, 李春玲, 蒋建龙, 毛瑞鹏, 寇生中, 李春燕. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为[J]. 金属学报, 2018, 54(12): 1818-1824.
[4] 魏海莲,刘国权,肖翔,张明赫. 表观的和基于物理的35Mn2钢奥氏体热变形本构分析[J]. 金属学报, 2013, 49(6): 731-738.
[5] 孔凡涛,崔宁,陈玉勇,熊宁宁. Ti-43Al-9V-Y合金的高温变形行为研究[J]. 金属学报, 2013, 49(11): 1363-1368.
[6] 朱传琳,张俊宝,程从前,赵杰. 变形温度对冷喷涂304不锈钢涂层材料高温变形行为的影响[J]. 金属学报, 2013, 49(10): 1275-1280.
[7] 余晖 KIM Youngmin 于化顺 YOU Bongsun 闵光辉. Mg-Zn-Zr-Ce合金高温变形行为与热加工性能研究[J]. 金属学报, 2012, 48(9): 1123-1131.
[8] 孙朝阳 栾京东 刘赓 李瑞 张清东. AZ31镁合金热变形流动应力预测模型[J]. 金属学报, 2012, 48(7): 853-860.
[9] 贾斌 彭艳. 铌微合金钢高温变形的本构关系[J]. 金属学报, 2011, 47(4): 507-512.
[10] 孙朝阳 刘金榕 李瑞 张清东. Incoloy 800H高温变形流动应力预测模型[J]. 金属学报, 2011, 47(2): 191-196.
[11] 方轶琉 刘振宇 张维娜 王国栋 宋红梅 江来珠. 节约型双相不锈钢2101高温变形过程中微观组织演化[J]. 金属学报, 2010, 46(6): 641-646.
[12] 申坤 汪明朴 郭明星 李树梅. Cu--0.23%Al2O3弥散强化铜合金的高温变形特性研究[J]. 金属学报, 2009, 45(5): 597-604.
[13] 王书晗 刘振宇 张维娜 王国栋. TWIP钢不同温度变形的力学性能变化规律及机理研究[J]. 金属学报, 2009, 45(5): 573-578.
[14] 张黎楠 谌祺 柳林. Zr55Cu30Al10Ni5块体非晶合金在过冷液态区的流变行为及本构关系[J]. 金属学报, 2009, 45(4): 450-454.
[15] 王智祥; 刘雪峰; 谢建新 . AZ91镁合金高温变形本构关系[J]. 金属学报, 2008, 44(11): 1378-1383 .