Please wait a minute...
金属学报    DOI: 10.3724/SP.J.1037.2013.00330
  论文 本期目录 | 过刊浏览 |
汽车板用Al—0.6Mg—0.9Si—0.2Cu合金时效析出动力学研究
张巧霞,郭明星,胡晓倩,曹零勇,庄林忠,张济山
北京科技大学新金属材料国家重点实验室, 北京 100083
STUDY ON KINETICS OF PRECIPITATION IN Al—0.6Mg—0.9Si—0.2Cu ALLOY FOR AUTOMOTIVE APPLICATION
ZHANG Qiaoxia, GUO Mingxing, HU Xiaoqian, CAO Lingyong, ZHUANG Linzhong, ZHANG Jishan
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
全文: PDF(541 KB)  
摘要: 

采用差示扫描量热法(DSC)和硬度测量方法对汽车用Al—0.6Mg—0.9Si—0.2Cu(质量分数, %)合金不同状态析出动力学进行了研究. 结果表明,T4态合金升温到100—-150℃时, DSC曲线出现低温析出峰,而T4P态合金无此低温析出峰; 经过T4P处理的合金其β″相析出峰位向低温移动.利用A—J—M方法计算合金不同相析出动力学参数,结果表明, T4和T4P态合金GP区溶解激活能分别为66和119 kJ/mol, β″相析出激活能分别为114和60 kJ/mol;T4态合金的溶解和析出动力学方程分别为:YGP=1-exp[-1.3×107t exp(-7977/T)],Yβ=1-exp[-4.7×1022t2exp(-27484/T)];T4P态合金的溶解和析出动力学方程分别为:YGP=1-exp[-2.4×1013 t exp(-14345/T)],Yβ=1-exp[-2.9×1011t2 exp(-14392/T)].此外, 在185℃时效过程中, 随着时效时间的延长, T4和T4P态合金的硬度均先不断增加达到峰值后趋于平缓,但是T4态合金经20 min时效处理后出现硬度下降, 而T4P态合金无此现象,利用GP区回溶和β″相析出动力学对此变化规律进行了很好的解释.

关键词 Al-Mg-Si-Cu合金汽车板自然时效预时效动力学    
Abstract

The kinetics of precipitation in Al—0.6Mg—0.9Si—0.2Cu (mass fraction, %) alloy under different conditions was investigated by differential scanning calorimetric analyses (DSC) and microhardness measurements. The results show that, an exothermic peak at about 100—-150℃ can be observed in the DSC curve for the nature aged (T4) alloy, but no peak for the pre—aged (T4P) alloy, and the peak corresponding with β″ phase moves toward the low temperature zone for T4P alloy. The fraction of transformation Y, the rate of transformation dY/dT, and the kinetic parameters such as activation energy Q and frequency factor k0 for GP zones dissolution and β″phase transformation were calculated by Avrami—Johnson—Mehl equation. The values of activation energy for GP zones dissolution after natural aging and pre—aging were 66 and 119 kJ/mol, respectively, and the values forβ″phase formation after natural aging and pre—aging were 114 and 60 kJ/mol, respectively. The kinetics expressions were obtained as follows, for T4 alloy:YGP=1-exp[-1.3×107t exp(-7977/T)],Yβ=1-exp[-4.7×1022t2 exp(-27484/T)];for T4P alloy: YGP=1-exp[-2.4×1013 t exp(-14345/T)],Yβ=1-exp[-2.9×1011t2 exp(-14392/T)].In addition, with the increasing of aging time, the wholetrend of hardness changing for pre—aged alloy is increasing at first, and then keeps constant basically,but for the nature aged alloy, the hardness decreases after aging at 185℃ for 20 min, which was explained by the kinetics obtained above.

Key wordsAl-Mg-Si-Cu alloy    automotive sheet, nature aging    pre-aging    kinetics
收稿日期: 2013-06-17     
基金资助:

国家高技术研究发展计划项目SS2013AA032103和中央高校基本科研业务费项目FRF—TD—12—001资助

通讯作者: 郭明星     E-mail: mingxingguo@skl.ustb.edu.cn
作者简介: 张巧霞, 女, 1987年生, 硕士生

引用本文:

张巧霞,郭明星,胡晓倩,曹零勇,庄林忠,张济山. 汽车板用Al—0.6Mg—0.9Si—0.2Cu合金时效析出动力学研究[J]. 金属学报, 10.3724/SP.J.1037.2013.00330.
ZHANG Qiaoxia, GUO Mingxing, HU Xiaoqian, CAO Lingyong, ZHUANG Linzhong, ZHANG Jishan. STUDY ON KINETICS OF PRECIPITATION IN Al—0.6Mg—0.9Si—0.2Cu ALLOY FOR AUTOMOTIVE APPLICATION. Acta Metall Sin, 2013, 49(12): 1604-1610.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00330      或      https://www.ams.org.cn/CN/Y2013/V49/I12/1604

[1] Miller W S, Zhuang L, Bottema J, Wittebrood A J, De Smet P, Haszler A,Vieregge A.  Mater Sci Eng, 2000; A280: 37

[2] Birol Y, Karlik M.  Scr Mater, 2006; 55: 625
[3] Birol Y.  Mater Sci Eng, 2005; A391:175
[4] Liu H, Chen Y, Zhao G, Liu C M, Zuo L.  Trans Nonferrous Met Soc China, 2006; 16: 917
[5] Zhen L, Kang S B.  Scr Mater, 1997; 36: 1089
[6] Ou B L, Shen C H.  Scand J Metall, 2005; 34: 318
[7] Esmaeili S, Lloyd D J.  Acta Mater, 2005; 53: 5257
[8] Wei F, Li J S, Chen C Q.  Rare Met Mater Eng, 2008; 37: 1348
(魏芳, 李金山, 陈昌麒. 稀有金属材料与工程, 2008; 37: 1348)
[9] Gupta A K, Jena A K, Chaturvedi M C.  Scr Metall, 1988; 22: 369
[10] Ghosh K S, Gao N.  Trans Nonferrous Met Soc China, 2011; 21: 1199
[11] Oguocha I N A, Yannacopoulos S.  Mater Sci Eng, 1997; A231: 25
[12] Edwards G A, Stiller K, Dunlop G L, Couper M J.  Acta Mater, 1998; 46: 3893
[13] De Geuser F, Lefebvre W, Blavette D.  Philos Mag Lett, 2006; 86: 227
[14] Zhen L, Kang S B, Kim H W.  Mater Sci Technol, 1997; 13: 905
[15] Murayama M, Hono K.  Acta Mater, 1999; 47: 1537
[16] Miao W F, Laughlin D E.  Metall Mater Trans, 2000; 31A: 361
[17] Esmaeili S, Lloyd D J.  Mater Charact, 2005; 55: 307
[18] An Y G, Zhang L, Vegter H, Hurkmans A.  Metall Mater Trans, 2002; 33A: 3121
[19] Luo A, Lloyd D J, Gupta A, Youdelis W V.  Acta Metall Mater, 1993; 41: 769
[20] Ortega A.  Thermochim Acta, 1996; 284: 379
[21] Matsuda K, Naoi T, Fujii K, Uetani Y, Sato T, Kamio A, Ikeno S.  Mater Sci Eng, 1999;A262: 232
[22] Chakrabarti D J, Laughlin D E.  Prog Mater Sci, 2004; 49: 389
[23] Gaber A, Ali A M, Matsuda K, Kawabata T, Yamazaki T, Ikeno S.  J Alloys Compd, 2007;432: 149
[24] Cuniberti A, Tolley A, Riglos M V, Giovachini R.  Mater Sci Eng, 2010; A527: 5307
[25] Buha J, Lumley R N, Crosky A G, Hono K.  Acta Mater, 2007; 55: 3015
[26] Galwey A K, Brown M E.  Handbook of Thermal Analysis and Calorimetry. Amsterdam: Elesvier, 1998: 147
[1] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[2] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[3] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[4] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[5] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
[6] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[7] 史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
[8] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[9] 王瑾, 余黎明, 李冲, 黄远, 李会军, 刘永长. 不同温度对含与不含位错α-Fe中He原子行为的影响[J]. 金属学报, 2019, 55(2): 274-280.
[10] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[11] 朱上,李志辉,闫丽珍,李锡武,张永安,熊柏青. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响[J]. 金属学报, 2019, 55(11): 1395-1406.
[12] 熊健,魏德安,陆宋江,阚前华,康国政,张旭. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟[J]. 金属学报, 2019, 55(11): 1477-1486.
[13] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.
[14] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[15] 王帅鹏, 罗文华, 李赣, 李海波, 张广丰. La含量对Ce-La合金氢化动力学的影响[J]. 金属学报, 2018, 54(8): 1187-1192.