Please wait a minute...
金属学报    DOI: 10.3724/SP.J.1037.2013.00301
  论文 本期目录 | 过刊浏览 |
前躯体组织对C—Mn—Si钢组织特征及力学行为的影响
任勇强,谢振家,张宏伟,袁胜福,宋婷婷,尚成嘉
北京科技大学材料科学与工程学院, 北京 100083
EFFECT OF PRECURSOR MICROSTRUCTURE ON MORPHOLOGY FEATURE AND MECHANICAL PROPERTY OF C—Mn—Si STEEL
REN Yongqiang, XIE Zhenjia, ZHANG Hongwei, YUAN Shengfu, SONG Tingting, SHANG Chengjia
School of Materials Science and Engineering, University of Science and Technology Beijing,Beijing 100083
全文: PDF(2302 KB)  
摘要: 

研究了不同的前躯体组织对于经临界区再加热—淬火—中温配分(IQ&P)处理所得的0.22C—1.9Mn—1.32Si多相钢的组织形貌和力学行为的影响. 相同的热处理工艺参数下,采用前躯体为马氏体(M)的组织设计倾向于在多相钢中获得板条状的铁素体和薄膜状(或短针状)的残余奥氏体;而采用前躯体为贝氏体—铁素体(B—F)的组织设计则倾向于在多相钢中获得块状的铁素体和近颗粒状的残余奥氏体.在本工作所用IQ&P工艺下, B—F前躯体多相钢尽管抗拉强度高达976 MPa, 但其延伸率只有26.7 %,使得其强塑积仅仅只有26 GPa•%; 而采用M前躯体设计可以使钢获得强度和塑性的优良结合,其强塑积超过31 GPa•%. 就均匀变形阶段的加工硬化行为而言,B—F前躯体多相钢尽管具有较高的加工硬化指数, 但其组织中的残余奥氏体稳定性较差, 因而瞬时加工硬化指数—真应变曲线的波动性很大, 随真应变的增大在外观上呈锯齿状;而M前躯体多相钢尽管加工硬化指数略低, 但其组织中的残余奥氏体具有较高的稳定性,因而瞬时加工硬化指数—真应变曲线较为平滑, 随真应变的增大呈逐次升高的趋势.产生上述不同力学行为的原因与钢中残余奥氏体和基体组织的形貌、比例和分布状态均有关,而上述因素从根本上又取决于不同前驱体自身的组织形貌与微观结构特征.

关键词 IQ&P工艺多相钢残余奥氏体瞬时加工硬化指数    
Abstract

The effects of different precursor microstructure on the morphology and mechanical properties of the 0.22C—1.9Mn—1.32Si multiphase steel which was obtained by the treatment of intercritical reheating—quenching and partitioning (IQ&P) heat treatment were examined. Under the same IQ&P heat treatment parameters, multiphase microstructure which contains lath—like ferrite matrix and film or short needle—like retained austenite can be obtained by the martensite (M) precursor steel; while multiphase steel which has a bainite—ferrite (B—F) precursor can obtain a microstructure of equiaxed—like ferrite matrix and particale like retained austenite. After the IQ&P process, tensile strength of the multiphase steel which has a B—F precursor is up to 976 MPa, but elongation of this kind of steel is only 26.7%, and thus the product of strength and elongation of this kind of steel is only 26 GPa•%; while multiphase steel which has a M precursor has realized the combined properties of high strength and excellent ductility, product of strength and elongation of this kind of steel reaches 31 GPa•%. As for the work hardening behavior of the uniform elongation stage, although B—F precursor multiphase steel has a higher work hardening index n than the M precursor multiphase steel, stability of the retained austenite in this kind of steel is relatively poor, variation behavior curve of the instantaneous n value with true strain for this kind of steel shows a notched—like shape; as for the multiphase steel which has a M precursor, retained austenite in this kind of steel is relatively stable, variation behavior curve of the instantaneous n value with true strain for this kind of steel is much more steady, which shows a trend of gradual increasing. The reason for the different tensile testing and work hardening results above is related to the morphology, proportion and distribution state of the retained austenite and matrix microstructures, which is due to the effect of different morphology and microstructure characteristics of the precursor phases by the roots.

Key wordsIQ&P process    multi—phase steel    retained austenite    instantaneous work hardening index
收稿日期: 2013-05-31     
基金资助:

国家重点基础研究发展计划资助项目2010CB630801

通讯作者: 尚成嘉     E-mail: cjshang@ustb.edu.cn
作者简介: 任勇强, 男, 1983年生, 博士生

引用本文:

任勇强,谢振家,张宏伟,袁胜福,宋婷婷,尚成嘉. 前躯体组织对C—Mn—Si钢组织特征及力学行为的影响[J]. 金属学报, 10.3724/SP.J.1037.2013.00301.
REN Yongqiang, XIE Zhenjia, ZHANG Hongwei, YUAN Shengfu, SONG Tingting, SHANG Chengjia. EFFECT OF PRECURSOR MICROSTRUCTURE ON MORPHOLOGY FEATURE AND MECHANICAL PROPERTY OF C—Mn—Si STEEL. Acta Metall Sin, 2013, 49(12): 1558-1566.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00301      或      https://www.ams.org.cn/CN/Y2013/V49/I12/1558

[1] Speich G R, Demarest V A, Miller R L.  Metall Trans, 1981; 12A: 1419

[2] Takashi F, Hirofumi M, Michio E, Hiroshi T, Kazuo K, Osamu A, Teruaki Y.Trans ISIJ, 1981; 21: 812
[3] Matsumura O, SakumaY, Takechi H.  Scr Metall, 1987; 21: 1301
[4] Matsumura O, SakumaY, Takechi H.  ISIJ Int, 1992; 32: 1014
[5] Sugimoto K, Misu M, Kobayashi M, Shirasawa H.  ISIJ Int, 1993; 33: 775
[6] Speer J G, Matlock D K, De Cooman B C, Schroth J G.  Acta Mater, 2003; 51: 2611
[7] Speer J G, Edmonds D V, Rizzo F C, Matlock D K.  Curr Opin Solid State Mater Sci, 2004; 8: 219
[8] Edmonds D V, He K, Rizzo F C, De Cooman B C, Matlock D K, Speer J G.Mater Sci Eng, 2006; A438—440: 25
[9] De Moor E, Lacroix S, Clarke A J, Penning J, Speer J G.  Metall Mater Trans, 2008; 39A: 2586
[10] Liu H P, Lu X W, Jin X J, Dong H, Shi J.  Scr Mater, 2011; 64: 749
[11] Paravicini B E, Santofimia M J, Zhao L, Sietsma J, Anelli E.  Mater Sci Eng, 2013; A559: 486
[12] Santofimia M J, Nguyen—Minh T, Zhao L, Petrov R, Sabirov I, Sietsma J.Mater Sci Eng, 2010; A527: 6429
[13] Maruyama H.  J Jpn Soc Heat Treat, 1977; 17: 198
[14] Nishiyama Z.   Martensitic Transformations. New York: Academic Press, 1978: 60
[15] Sugimoto K, Usui N, Kobayashi M, Hashimoto S.  ISIJ Int, 1992; 32: 1311
[16] Chiang J, Lawrence B, Boyd J D, Pilkey A K.  Mater Sci Eng, 2011; A528: 4516
[17] Santofimia M J, Zhao L, Sietsma J.  Metall Mater Trans, 2009; 40A: 46
[18] Sakuma Y, Matlock D K, Krauss G.  Metall Trans, 1992; 23A: 1221
[19] Kim S J, Lee C G, Choi I, Lee S.  Metall Mater Trans, 2001; 32A: 505
[20] Ren Y Q, Xie Z J, Shang C J.  Acta Metall Sin, 2012; 48: 1074
(任勇强, 谢振家, 尚成嘉.金属学报, 2012; 48: 1074)
[21] Dieter G E.  Mechanical Metallurgy. 2nd Ed., New York: McGraw—Hill Book Company, 1988: 87
[22] Jacques P, Cornet X, Harlet P, Ladri$\grave{\rm e$re J, Delannay F.  Metall Mater Trans, 1998; 29A: 2383
[23] Yakubovsky O, Fonstein N, Bhattacharya D. In: De Cooman B C ed.,Proceedings Conference Trip—Aided High Strength Ferrous Alloys,Aachen: Wissenschaftsverlag Mainz Gmbh, 2002: 263
[24] Mahieu J, Maki J, De Cooman B C, Claessens S.  Metall Mater Trans, 2002; 33A: 2573
[25] Bai D Q, Chiro A D, Yue S.  Mater Sci Forum, 1998; 284—286: 253
[26] Wang J, Van Der Zwaag S.  Metall Mater Trans, 2001; 32A: 1527
[27] Pereloma E V, Timokhina I B, Hodgson P D.  Mater Sci Eng, 1999; 273—275: 448
[28] Baik S C, Park S H, Kwon O, Kim D I, Oh K H.  ISIJ Int, 2006; 46: 599
[29] Thierry I, Jos$\acute{\rm e$e D, Audrey C, Christopher O.  Steel Res, 2002; 6—7: 218
[30] Kwon E P, Fujieda S, Shinoda K, Suzuki S.  Mater Sci Eng, 2011; A528: 5007
[31] Ryde L.  Mater Sci Technol, 2006; 22: 1297
[32] Xiong X C, Chen B, Huang M X, Wang J F, Wang L.  Scr Mater, 2013; 68: 321
[33] Tsukatani I, Hashimoto S I, Inoue T.  ISIJ Int, 1991; 31: 992
[34] Sugimoto K I, Misu M, Kobayashi M, Shirasawa H.  ISIJ Int, 1993; 33: 775
[1] 金学军,龚煜,韩先洪,杜浩,丁伟,朱彬,张宜生,冯毅,马鸣图,梁宾,赵岩,李勇,郑菁桦,石朱生. 先进热成形汽车钢制造与使用的研究现状与展望[J]. 金属学报, 2020, 56(4): 411-428.
[2] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[3] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[4] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[5] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[6] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[7] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[8] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
[9] 谢振家,尚成嘉,周文浩,吴彬彬. 低合金多相钢中残余奥氏体对塑性和韧性的影响*[J]. 金属学报, 2016, 52(2): 224-232.
[10] 陈连生, 张健杨, 田亚强, 宋进英, 徐勇, 张士宏. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响*[J]. 金属学报, 2015, 51(5): 527-536.
[11] 李小琳, 王昭东. 一步Q&P工艺对双马氏体钢微观组织与力学性能的影响*[J]. 金属学报, 2015, 51(5): 537-544.
[12] 周文浩, 谢振家, 郭晖, 尚成嘉. 700 MPa级高塑低碳低合金钢的多相组织调控及性能[J]. 金属学报, 2015, 51(4): 407-416.
[13] 巨彪, 武会宾, 唐荻, 潘学福. 微观组织演变对超高强耐磨钢板力学性能的影响[J]. 金属学报, 2014, 50(9): 1055-1062.
[14] 骆宗安, 刘纪源, 冯莹莹, 彭文. 超快速连续退火对低Si系Nb-Ti微合金化TRIP钢组织和力学性能的影响*[J]. 金属学报, 2014, 50(5): 515-523.
[15] 田亚强, 张宏军, 陈连生, 宋进英, 徐勇, 张士宏. 低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响[J]. 金属学报, 2014, 50(5): 531-539.