Please wait a minute...
金属学报  2013, Vol. 49 Issue (12): 1549-1557    DOI: 10.3724/SP.J.1037.2013.00290
  论文 本期目录 | 过刊浏览 |
快速加热回火对690 MPa级海洋工程用钢组织和性能的影响
张杰1),蔡庆伍2),武会宾2),樊艳秋3)
1) 北京航空制造工程研究所, 北京100024
2) 北京科技大学冶金工程研究院, 北京100083
3) 首钢技术研究院, 北京 100043
EFFECT OF TEMPERING TEMPERATURE ON MICRO-STRUCTURE AND PROPERTY OF 690 MPa GRADE OCEAN ENGINEERING STEEL UNDER FAST HEATING RATE
ZHANG Jie1), CAI Qingwu2), WU Huibin2), FAN Yanqiu3)
1) Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024
2) Research Institute of Metallurgy Engineering, University of Science and Technology Beijing, Beijing 100083
3) Technical Research Institute of Shougang, Beijing 100043
引用本文:

张杰,蔡庆伍,武会宾,樊艳秋. 快速加热回火对690 MPa级海洋工程用钢组织和性能的影响[J]. 金属学报, 2013, 49(12): 1549-1557.
ZHANG Jie, CAI Qingwu, WU Huibin, FAN Yanqiu. EFFECT OF TEMPERING TEMPERATURE ON MICRO-STRUCTURE AND PROPERTY OF 690 MPa GRADE OCEAN ENGINEERING STEEL UNDER FAST HEATING RATE[J]. Acta Metall Sin, 2013, 49(12): 1549-1557.

全文: PDF(5541 KB)  
摘要: 

设计一种以低碳贝氏体组织为特征的690 MPa级海洋工程用钢,使用感应加热炉对直接淬火态钢板进行快速加热回火,通过拉伸实验、SEM和TEM手段研究了不同回火温度对其组织和性能的影响. 结果表明, 钢材的性能,特别是强韧性匹配受未转变奥氏体的转变行为以及析出物状态的综合影响.快速加热至550℃进行回火, 组织软化, 晶内只有少量析出物出现,致使强度降低, 未转变奥氏体在冷却过程中转变为马氏体/奥氏体(M/A)岛; 快速加热到600℃,由未转变奥氏体转化成的M/A岛尺寸稍有减小, 细小的Cu, Nb/Ti复合析出物大量出现,钢材的强度显著上升; 快速升温到660℃, 组织内部析出物发生粗化,强度稍有下降, 未转变奥氏体在板条间生成残余奥氏体薄膜, 使得韧性提高,强韧匹配最佳; 快速升温到700℃进行回火, 析出物进一步粗化,未转变奥氏体进一步长大在室温下转变为尺寸较大的M/A岛, 韧性再次下降,强韧性匹配降低. 综合考虑, 采用600—660℃的快速加热回火工艺可以使钢材达到最佳的强韧性匹配.

关键词 加热速率回火温度海洋工程未转变奥氏体析出物    
Abstract

Ocean engineering steel has been rapidly developed with the exploration of ocean resourses. A 690 MPa grade low carbon bainite steel was designed for ocean engineering, to upgrade performance by microstructure control and the refinement and dispersion control of precipitates. This steel was tempered on--line with rapid heating rate after control rolling and accelerated cooling process. The results show that the mechanical properties, especially the strength--toughness balance, are strongly influenced by the transformation of untransformed austenite and the condition of precipitates. When fast tempering at 550℃, microstructure recovered and few precipitates appeared, bringing strength down seriously, untransformed austenite turned into martensite/austenite (M/A) islands on cooling. When the tempering temperature reached 600℃, the size of the M/A islands transformed from untransformed austenite decreased slightly, Cu and Nb/Ti precipitates increased greatly, bringing an apparent improvement in strength. When tempering temperature reached 660℃, precipitates got coarsened and made the strength decreases, the untransformed austenite formed retained austenite film between the laths, improving toughness and making the best strength—toughness balance. When the tempering temperature reached the top at 700℃, the precipitates got further coarsened, the untransformed austenite on cooling turned into large M/A islands, bringing toughness and the strength—toughness balance down again. In general consideration, fast heating tempering at 600—660℃ could make the steel has the best strength—toughness balance.

Key wordsheating rate    tempering temperature    ocean engineering    untransformed austenite    precipitate
收稿日期: 2013-05-28     
基金资助:

国家高技术研究发展计划资助项目2012AA03A508

作者简介: 张杰, 男, 1981年出生, 工程师

[1] Di G B, Liu Z Y, Ma Q S.  J Iron Steel Res, 2010; 22(7): 51

(狄国标, 刘振宇, 麻庆申. 钢铁研究学报, 2010; 22(7): 51)
[2] Tang D, Wu H B.  Steel Rolling, 2012; 29(2): 1
(唐狄, 武会宾. 轧钢, 2012; 29(2): 1)
[3] He X L, Shang C J.  High Performance Low Carbon Bainite Steel.Beijing: Metallugical Industry Press, 2008: 148
(贺信莱, 尚成嘉. 高性能低碳贝氏体钢. 北京: 冶金工业出版社, 2008: 148)
[4] Gao K, Wang L D, Zhu M, Chen J D, Shi Y J, Kang M K.  Acta Metall Sin, 2007; 43: 315
(高宽, 王六定, 朱明, 陈景东, 施易军, 康沫狂. 金属学报, 2007; 43: 315)
[5] Shang C J, Wang X M, Zhou Z J, Liang X, Miao C L, He X L.  Acta Metall Sin, 2008; 44: 287
(尚成嘉, 王学敏, 周召槿, 梁鑫, 缪成亮, 贺信莱. 金属学报, 2008; 44: 287)
[6] Li X C, Xie Z J, Wang X L, Wang X M, Shang C J.  Acta Metall Sin, 2013; 49: 167
(李秀程, 谢振家, 王学林, 王学敏, 尚成嘉. 金属学报, 2013; 49: 167)
[7] Wan D C, Yu W, Li X L, Zhang J, Wu H B, Cai Q W.  Acta Metall Sin, 2012; 48: 455
(万德成, 余伟, 李晓林, 张杰, 武会宾, 蔡庆伍. 金属学报, 2012; 48: 455)
[8] Zhang J, Cai Q W, Wu H B, Zhang K, Wu B.  J Iron Steel Res Int, 2012; 19(3): 67
[9] Li X L, Yu W, Zhu A L, Wu H B, Wan D C, Zhang J.  Trans Mater Heat Treat, 2012; 33(12): 100
(李晓林, 余伟, 朱爱玲, 武会宾, 万德成, 张杰. 材料热处理学报, 2012; 33(12): 100)
[10] Yakubtsov I A, Boyd J D.  Mater Sci Technol, 2008; 24: 221
[11] Zhang J, Cai Q W, Wu H B, Fan X H, Zhang M J.  J Univ Sci Technol, 2012; 34: 657
(张杰, 蔡庆伍, 武会宾, 樊学华, 张明洁. 北京科技大学学报, 2012; 34: 657)
[12] Hayashi K, Nagao A, Matsuda Y.  JFE Technol Report, 2008; (11): 19
[13] Okatsu M, Shikanai N, Kondo J.  JFE Technol Report, 2008; (12): 8
[14] Zhang J, Cai Q W, Fan Y Q, Wu H B.  Trans Mater Heat Treat, 2012; 33(4): 58
(张杰, 蔡庆伍, 樊艳秋, 武会宾. 材料热处理学报, 2012; 33(4): 58)
[15] Wu H B, Shang C J, Zhao Y T, Yang S W, Wang X M, He X L.  Iron Steel, 2005; 40(3): 62
(武会宾, 尚成嘉, 赵运堂, 杨善武, 王学敏, 贺信莱. 钢铁, 2005; 40(3): 62)
[16] Huang B, Lee C G.  Mater Sci Eng, 2010; A527: 4341
[17] Maleque M A, Poon Y M, Masjuki H H.  J Mater Process Technol, 2004; 153: 482
[18] Nie W J, Wang X M, Wu S J, Guan H L, Shang C J.  Sci China Technol Sci, 2012; 55: 1791
[19] Kumar A, Singh S B, Ray R K.  Mater Sci Eng, 2008; A474: 270
[20] You Y, Shang C J, Nie W J.  Mater Sci Eng, 2012; A558: 692
[21] Suzuki M, Sakui S, Kojima T, Watanabe I.  Quarterly J Jpn Weld Soc, 1987; (1): 209
[22] Nakanishi M, Komizo Y, Fukada Y.  Quarterly J Jpn Weld Soc, 1986; (2): 447
[23] Sakuma Y, Matlock D K, Krauss G.  Metall Trans, 1992; 23A: 1221
[24] Zhang F T, Jiang J, Song J X, Han C.  Acta Metall Sin, 1986; 22: B169
(张弗天, 姜健, 宋建先, 韩慈. 金属学报, 1986; 22: B169)
[25] Song Y Y, Li X Y, Rong L J, Ping D H, Yin F X, Li Y Y.  Mater Lett, 2010; 64: 1411
[26] Morris J W, Guo Z, Krenn C R, Kim Y H.  ISIJ Int, 2001; 41: 599
[27] Song Y Y, Ping D H, Yin F X, Li Y Y.  Mater Sci Eng, 2010; A527: 614
[28] Yang Y H, Cai Q W, Wu H B, Wang H.  Acta Metall Sin, 2009; 45: 270
(杨跃辉, 蔡庆伍, 武会宾, 王华. 金属学报, 2009; 45: 270)
[29] You Y, Shang C J, Chen L.  Mater Des, 2013; 43: 485
[30] Davis C L, King J E.  Metall Mater Trans, 1994; 25A: 563
[31] Misra R D K, Jia Z, O'Malley R, Jansto S J.  Mater Sci Eng, 2011; A528: 8772
[1] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[2] 惠亚军, 刘锟, 吴科敏, 李秋寒, 牛涛, 武巧玲. 卷取温度对500 MPa级热冲压桥壳用钢组织与力学性能的影响[J]. 金属学报, 2020, 56(12): 1605-1616.
[3] 王占花, 惠卫军, 谢志奇, 张永健, 赵晓丽. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报, 2020, 56(11): 1441-1451.
[4] 舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
[5] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[6] 徐洋, 孙明雪, 周砚磊, 刘振宇. (Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响[J]. 金属学报, 2015, 51(1): 31-39.
[7] 张可, 雍岐龙, 孙新军, 李昭东, 赵培林, 陈守东. 回火温度对高Ti微合金直接淬火高强钢组织及性能的影响*[J]. 金属学报, 2014, 50(8): 913-920.
[8] 李振江, 肖纳敏, 李殿中, 张俊勇, 罗永建, 张瑞雪. G18CrMo2-6钢回火组织及冲击韧性研究*[J]. 金属学报, 2014, 50(7): 777-786.
[9] 胡可, 李小强, 屈盛官, 杨超, 李元元. 93W-5.6Ni-1.4Fe高比重合金放电等离子主烧结曲线的建立*[J]. 金属学报, 2014, 50(6): 727-736.
[10] 吴斯, 李秀程, 张娟, 尚成嘉. Nb对中碳钢相变和组织细化的影响*[J]. 金属学报, 2014, 50(4): 400-408.
[11] 温涛, 胡小锋 宋元元, 闫德胜, 戎利建. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响*[J]. 金属学报, 2014, 50(4): 447-453.
[12] 李俊杰, Godfrey Andrew, 刘伟, 张弛. 连续加热条件下过共析钢奥氏体化研究[J]. 金属学报, 2014, 50(10): 1179-1188.
[13] 陈俊丹 莫文林 王培 陆善平. 回火温度对42CrMo钢冲击韧性的影响[J]. 金属学报, 2012, 48(10): 1186-1193.
[14] 田志凌; 许良红 . 高强铝合金焊接接头无析出物区的形成机理[J]. 金属学报, 2008, 44(1): 91-97 .
[15] 王晓颖; 张瑞杰; 介万奇 . 匀速加热过程中第二相的扩散溶解[J]. 金属学报, 2004, 40(4): 434-438 .