Please wait a minute...
金属学报  2013, Vol. 49 Issue (6): 763-768    DOI: 10.3724/SP.J.1037.2012.00728
  论文 本期目录 | 过刊浏览 |
长期时效对C276合金组织和力学性能的影响
刘锦溪1,2),张继祥1),陆燕玲2),李肖科2),李志军2),周兴泰2)
1)重庆交通大学机电与汽车工程学院, 重庆 400074
2)中国科学院上海应用物理研究所堆材料与工程技术部, 上海 201800
EFFECT OF LONG-TERM AGING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ALLOY C276
LIU Jinxi1,2), ZHANG Jixiang1), LU Yanling2), LI Xiaoke2), LI Zhijun2), ZHOU Xingtai2)
1) College of Mechatronics and Automobile Engineering, Chongqing Jiaotong University, Chongqing 400074
2) Department of Nuclear Materials Science and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
全文: PDF(2998 KB)  
摘要: 

采用TEM和SEM研究了C276镍基高温合金在700℃长期时效过程中的组织变化,利用万能高温材料试验机研究时效后合金试样700℃高温力学性能,并利用SEM对拉伸断口进行形貌分析. 结果表明, 700℃长期时效后,C276合金在晶界和晶内析出大量块状μ相和M6C碳化物, 且随时效时间的延长,块状析出相长大, 晶界处的析出相向晶内呈针状生长.析出相对合金有一定的强化效果,高温长期时效, 合金强度不会降低.合金的塑性随时效时间的延长先降低后增加, 在时效720 h达到峰值后又随着时间延长而降低,但在较长时效时间内合金保持较好的塑性. 高温长期时效的C276合金高温拉伸断裂方式为韧性断裂.

关键词 镍基高温合金C276长期时效力学性能析出相    
Abstract

Nickel-based superalloy C276 had become one of the alternative materials in simulation loop of thorium molten salt reactor(TMSR) nuclear power system. The strength and plasticity decay of C276 alloy under high temperature environment for long time will directly threatened the security of simulation loop of TMSR. The microstructure of C276 alloy after long-term aging at 700℃ was studied by TEM and SEM with EDS, and the high temperature mechanical performance of C276 alloy after aging was researched at 700℃ with an universal high-temperature materials testing machine. At the same time, the morphology of tensile fracture was analyzed by SEM. The results show that massive block μ phase and M6C carbides are precipitated after long--term aging with 700℃ at the grain boundaries and within grains of C276 alloy, and the block precipitated phase grains grow up with aging time, some precipitated grains at boundaries extend forward the~interior of based crystal. The alloy is strengthened by the effect of precipitation phase, so the strength is not reduced after long--term aging at 700℃ high temperature. As aging time increases, the plasticity of C276 alloy reduces firstly and then increases to the peak after aging 720 h, and decreases again. However, the plasticity of C276 alloy still maintain well after longer aging time. The high temperature tensile fracture mode of C276 alloy is ductile fracture after long-term aging.

Key wordsnickel-based superalloy C276    long-term aging, mechanical property    precipitation
收稿日期: 2012-12-10     
基金资助:

国家重点基础研究发展计划项目2010CB934501, 国家自然科学基金项目11005148和50904044,中国科学院战略性先导科技专项项目XDA02040000,中国科学院院长基金特别支持项目29以及上海市科学技术委员会项目11JC1414900资助

通讯作者: 张继祥     E-mail: jixiangzhang@163.com
作者简介: 刘锦溪, 男, 1987年生, 硕士生

引用本文:

刘锦溪,张继祥,陆燕玲,李肖科,李志军,周兴泰. 长期时效对C276合金组织和力学性能的影响[J]. 金属学报, 2013, 49(6): 763-768.
LIU Jinxi, ZHANG Jixiang, LU Yanling, LI Xiaoke, LI Zhijun, ZHOU Xingtai. EFFECT OF LONG-TERM AGING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ALLOY C276. Acta Metall Sin, 2013, 49(6): 763-768.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00728      或      https://www.ams.org.cn/CN/Y2013/V49/I6/763

[1] Rebak R B, Crook P.  Adv Mater Processes, 2000; 157: 37

[2] Akhter J I, Shaikh M A.J Mater Sci Lett, 2001; 20: 333
[3] Turchi P E A, Kaufman L, Liu Z K.Calphad, 2007; 31: 237
[4] Fuchs G E, Dannemann K A, Deragon T C.  Long Term Stability of High Temperature Materials. Pennsylvania: TMS, 1999: 3
[5] Janowski G M, Harmon B S, Pletkn B J.Metall Trans, 1987; 18A: 1341
[6] Pollock T M.  Mater Sci Eng, 1955; B32: 255
[7] Murata Y.J Mater Sci, 1983; 23: 2069
[8] Tawancy H M.J Mater Sci, 1981; 16: 2883
[9] Garossen T J, McCathy G P.  Metall Trans, 1985; 16A: 1213
[10] Liu W C, Chen Z L, Yao M.  Metall Trans, 1999; 30A: 31
[11] Song J X, Xiao C B, Li S S, Han Y F.  Acta Metall Sin, 2002; 38: 250
 (宋尽霞, 肖程波, 李树索, 韩雅芳. 金属学报, 2002; 38: 250)
[12] Zhao S Q, Dong J X, Xie X S.  Chin J Nonferrous Met, 2003; 13: 565
 (赵双群, 董建新, 谢锡善. 中国有色金属学报, 2003; 13; 565)
[13] Ma Y, Lu D G , Mao X P, Zhang L Y, Cai J.  Rare Met Mater Eng, 2010; 39: 1571
 (马雁 , 陆道纲, 毛雪平, 张立殷, 蔡军. 稀有金属材料与工程, 2010; 39: 1571)
[14] Raghavan M, Berkowitz B J, Scanlon J C. Metall Trans, 1982; 13A: 979
[15] Lloyd A C, Shoesmith D W, Mcinyer N S, Noel J J.J Electrochem Soc, 2003; 150: B120
[16] Streicher M A. Corrosion, 1976; 32: 79
[17] Jin W K, Byunq H C, Jin S H. J Korean Inst Met Mater, 2002; 40: 1016
[18] Ahmad M, Akhter J I, Akhtar M, Iqbal M, Ahmed E, Choudhry M A. J Alloys Compd, 2005; 390: 88
[19] Jiao S Y, Zhu G N, Dong J X, Zhang Q Q. J Mater Eng, 2011; (1): 47
 (焦少阳, 朱冠妮, 董建新, 章清泉. 材料工程, 2011; (1): 47)
[20] Shi A J, Dong J X, Zhang M C, Zheng L.  Spec Steel, 2009; 30: 7
 (施爱娟, 董建新, 张麦仓, 郑磊. 特殊钢, 2009; 30: 7)
[21] Tawancy H M.  J Mater Sci, 1996; 31: 3929
[22] Zheng Y R.  Acta Metall Sin, 1999; 35: 1242
 (郑运荣. 金属学报, 1999; 35: 1242)
[23] Cai Y L, Zheng Y R.  Acta Metall Sin, 1982; 18: 30
 (蔡玉林, 郑运荣. 金属学报, 1982; 18: 30)
[24] Ma Y H, Zhao K, Lou L H, Hu Z Q.  J Chin Electr Microsc Soc, 2006; 25(suppl): 116
 (马永会, 赵锴, 楼琅洪, 胡壮麒. 电子显微学报, 2006; 25(增刊): 116)
[25] Zhao M H, Zhang X Y, Jiao L Y, Fu H Z.  Mater Eng, 1992; (sl): 121

 (赵明汉, 张旭瑶, 焦兰英, 傅宏镇. 材料工程, 1992; (sl): 121)

[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[4] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[5] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[6] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[7] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[8] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[9] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[10] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[11] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[12] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[13] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[14] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[15] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.