,"/> 多元Al-7.5Si-4Cu合金热疲劳裂纹萌生与扩展行为的研究
Please wait a minute...
金属学报  2013, Vol. 49 Issue (3): 303-310    DOI: 10.3724/SP.J.1037.2012.00484
  论文 本期目录 | 过刊浏览 |
多元Al-7.5Si-4Cu合金热疲劳裂纹萌生与扩展行为的研究
刘光磊1,司乃潮1,孙少纯1,张志坚1,吴勤方2
1)江苏大学材料科学与工程学院镇江 212013
2)苏州明志科技有限公司, 苏州 215217
THERMAL FATIGUE CRACK INITIATION ANDPROPAGATION OF MULTIELEMENTAl-7.5Si-4Cu ALLOY
LIU Guanglei1, SI Naichao1, SUN Shaochun1, ZHANG Zhijian1,WU Qinfang2
1) School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013
2) Suzhou Mingzhi Technology Ltd., Suzhou 215217
引用本文:

刘光磊,司乃潮,孙少纯,张志坚,吴勤方. 多元Al-7.5Si-4Cu合金热疲劳裂纹萌生与扩展行为的研究[J]. 金属学报, 2013, 49(3): 303-310.
LIU Guanglei, SI Naichao, SUN Shaochun, ZHANG Zhijian, WU Qinfang. THERMAL FATIGUE CRACK INITIATION ANDPROPAGATION OF MULTIELEMENTAl-7.5Si-4Cu ALLOY[J]. Acta Metall Sin, 2013, 49(3): 303-310.

全文: PDF(1233 KB)  
摘要: 

研究了不同热处理状态的多元Al-7.5Si-4Cu合金在室温至350 ℃下的热疲劳行为, 利用OM和SEM对合金的热疲劳裂纹形貌进行了观察.结果表明: T6处理后多元Al-7.5Si-4Cu合金的热疲劳性能优于铸淬+时效态和铸态. 热疲劳裂纹均萌生于V型缺口处, 热应力诱导使组织氧化疏松最终成为裂纹萌生源. 裂纹扩展前期为沿晶生长, 主要靠裂尖钝化-尖锐化引起裂纹扩展; 裂纹扩展后期为沿晶、穿晶混合生长, 以裂尖钝化-尖锐化和裂尖前沿空洞连体复合方式扩展. 扩展行径受Si相的形状和位向影响, 与Si相短轴方向夹角大于60°为“绕墙”扩展; 与长轴方向夹角大于60°为“穿墙”扩展. 氧化作用在裂纹萌生期表现显著, T6态合金抗氧化性能最优.

关键词 多元Al-7.5Si-4Cu热疲劳萌生扩展行径氧化    
Abstract

With the rapid development of automotive industry, the requirements for engine performance hasbecome increasingly higher and higher, such as dynamic performance, environmental performance, fuel economyperformance and so on. Obviously, using lighter aluminum engine has become the future of the automobile industry.When start or stop the engine, the engine generates drastic temperature field that will make parts of the enginecomponents into the plastic deformation zone. If the engine components continue like this, extremely high thermalstrain will cause the thermal fatigue failure of aluminum alloy for automotive engine. Thermal fatigue is a more seriousform of material fatigue failure. The thermal fatigue is prevalent in many important engine castings, such as cylinderbody, cylinder head, piston and so on. Therefore, study on thermal fatigue properties of multivariate Al-Si-Cu castalloy has the most important significance. Based on this thermal fatigue behaviors of multivariate Al-7.5Si-4Cu alloys under different heat treatmentwere investigated in the temperature ranges of room temperature to 350℃. Thethermal fatigue cracks of the tested specimens were observed using OM and SEM. The results demonstrate that thermalfatigue properties of the alloy after T6 heat treatment is better than the alloy after cast-quenching+aging heattreatment and the cast alloy. Reasonable heat treatment process can improve the strength, the plasticity and thethermal fatigue property of multivariate Al-7.5Si-4Cu alloy, including reduce the rate of crack propagation.The main reason of crack initiation is oxidative microstructure induced by thermal stress. Fatigue crack expands alongthe grain boundary bypassivation-sharpen of crack tip in the early. In the late, fatigue crack expands with both intergranular way andtransgranular way by passivation-sharpen of crack tip and siamesed holes on front edge of crack tip. The Si phasescan affect fatigue crack propagation. When the angle between the fatigue crack propagation and the short axis of theSi phase is more than 60°, fatigue crack expandsas “bypass-wall expansion”. When the angle between the fatiguecrack propagation and the long axis of the Si phase is more than 60°, fatigue crack expands as “through-wallexpansion”. Oxidation behavior effects significantly at the crack initiation period. After T6 heat treatment, theantioxidant property of multivariate Al-7.5Si-4Cu alloy is the best. Oxidation kinetics curves of multivariateAl-7.5Si-4Cu alloy under the different heat treatment are all logarithmic relationship.

Key wordsmultivariate Al-7.5Si-4Cu    thermal fatigue    initiation    propagation path     ')" href="#">oxidation
 
收稿日期: 2012-08-13     
基金资助:

科技部科技型中小企业技术创新基金项目09C26279200863和江苏省科技成果转化专项资金项目BA2011084资助

作者简介: 刘光磊, 男, 1983年生, 博士生

[1] Lan D Y, Guo A R.Res Stud Foundry Equip, 2008; 8(4): 45


(兰冬云, 郭敖如. 铸造设备研究, 2008; 8(4): 45)

[2] Ding X Q, He G Q.J TongjiUniv, 2005; 11: 1504

(丁向群, 何国求. 同济大学学报, 2005; 11: 1504)

[3] Xia P C, Yu J J, Sun X F, Guan H R, Hu Z Q.Rare Met Mater Eng, 2011; 40: 152

(夏鹏成, 于金江, 孙晓峰, 管恒荣, 胡壮麒. 稀有金属材料与工程, 2011; 40: 152)

[4] Xiao X, Xu H, Qin X Z, Guo Y A, Guo J T, Zhou L Z.ActaMetall Sin, 2011; 47: 1129

(肖旋, 许辉, 秦学智, 郭永安, 郭建亭, 周兰章. 金属学报, 2011; 47: 1129)

[5] Jiang X S, He G Q, Liu B, Fan S J, Zhu M H.Rare Met Mater Eng, 2010; 39(suppl.): 459

(蒋小松, 何国求, 刘兵, 范宋杰, 朱旻昊. 稀有金属材料与工程, 2010; 39(增刊): 459)

[6] Tilmann B, Detlef L, Jochen L, Ingo H.Mater SciEng, 2007; A468: 184

[7] John C, translated by Li D Z, Li Y Y.Castings. Beijing: Science Press, 2011: 344

(约翰坎贝尔著, 李殿中, 李依依译. 铸造原理. 北京: 科学出版社, 2011: 344)

[8] Deng B L, Liu J P, Yang J, Zhao Z C, Fu J Q.J Hunan Univ (Nat Sci), 2012; 39(2): 30

(邓帮林, 刘敬平, 杨靖, 赵智超, 付建勤. 湖南大学学报(自然科学版), 2012; 39(2): 30)

[9] Liu Y B, Liu Z Y, Li Y T, Xia Q K, Zhou J.Mater SciEng, 2008; A492: 333

[10] Mo D F, He G Q, Zhu Z Y, Liu X S.ActaMetall Sin, 2009; 45: 861

(莫德锋, 何国球, 朱正宇, 刘晓山. 金属学报, 2009; 45: 861)

[11] Xu F, Chen Z Z.EngMech, 2011; 28(10): 197

(徐芳, 陈振中. 工程力学, 2011; 28(10): 197)

[12] Song M S, Ran M W, Kong Y Y, Yan D Y.Chin J Nonferrous Met, 2011; 21: 538

(宋谋胜, 冉茂武, 孔园园, 晏登扬. 中国有色金属学报, 2011; 21: 538)

[13] Jiang X S, He G Q, Liu B, Fan S J, Zhu M H.Trans Nonferrous Met Soc China, 2011; 21: 443

[14] Arami H, Khalifehzadeh R, Akbari M, Khomamizadeh F.Mater SciEng, 2008; A472: 107

[15] Si N C, Wu Q, Li G Q.Foundry, 2006; 55: 731

(司乃潮, 吴强, 李国强. 铸造, 2006; 55: 731)

[16] Wang H.PhD Dissertation, Northwestern Polytechnical University, Xi'an, 2002

(王泓. 西北工业大学博士学位论文, 西安, 2002)

[17] Song J M, Lui T S, Kao I H, Chen L H, Lin H M.Scr Mater, 2004; 51: 1159

[18] Zhou J E, Ran G.Heat Treat Met, 2008; 33(1): 34

(周敬恩, 冉广. 金属热处理, 2008; 33(1): 34)

[19] Zhang H, Wang Y C, Liu F, Ai S H, Zang Q S, Wang Z G.J Mater SciTechnol, 2002; 18: 176

[20] Li L.PhD Dissertation, Northeastern University, Shenyang, 2009

(李莉. 东北大学博士学位论文, 沈阳, 2009)

[21] Cui Y Y, Xiang H F, Jia Q, Yang R.ActaMetall Sin, 2005; 41: 108

(崔玉友, 项宏福, 贾清, 杨锐. 金属学报, 2005; 41: 108)

[22] Jian H G.PhD Dissertation, Central South University, Changsha, 2010

(蹇海根. 中南大学博士学位论文, 长沙, 2010)

[23] Tian N, Zhao G, Zuo L, Liu C M.ActaMetall Sin, 2010; 46: 613

(田妮, 赵刚, 左良, 刘春明. 金属学报, 2010; 46: 613)

[24] Zhang Y H, Zhang Z Q, Robert E S, Liu Q.ActaMetall Sin, 2012; 48: 351

(张永皞, 张志清, Robert E S, 刘庆. 金属学报, 2012; 48: 351)

[25] Zhou M Z, Yi D Q, Wang B, Huang D Y.J Central South Univ (SciTechnol), 2012; 43(1): 66

(周明哲, 易丹青, 王斌, 黄道远. 中南大学学报(自然科学版), 2012; 43(1): 66)

[26] Zhang T B, Ding H, Deng Z H, Zhong H, Hu R, Xue X Y, Li J S.Rare Met Mater Eng, 2012; 41(1): 33

(张铁邦, 丁浩, 邓志海, 钟宏, 胡锐, 薛祥义, 李金山. 稀有金属材料与工程, 2012; 41(1): 33)
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[3] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[4] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[5] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[6] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[7] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[8] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[9] 胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.
[10] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[11] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[12] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[13] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[14] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[15] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.