Processing math: 100%
Please wait a minute...
金属学报  2012, Vol. 48 Issue (7): 815-821    DOI: 10.3724/SP.J.1037.2012.00114
  论文 本期目录 | 过刊浏览 |
换热器T2紫铜管在潮湿状态下的腐蚀机理研究
王长罡1), 邓为民2), 赵广宇2), 董俊华1), 柯伟1), 陈学斌1)
1) 中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
2) 海军驻上海电站辅机厂军代表室, 上海 200090
STUDY ON THE CORROSION MECHANISM OF T2 COPPER CONDENSER TUBE UNDER THE HUMID ENVIRONMENT
WANG Changgang1), DENG Weimin2), ZHAO Guangyu2),  DONG Junhua1),  KE Wei1), CHEN Xuebin1)
1) State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Military Representative Office of the Navy in Shanghai Power Station Auxiliary Equipment Factory, Shanghai 200090
引用本文:

王长罡 邓为民 赵广宇 董俊华 柯伟 陈学斌. 换热器T2紫铜管在潮湿状态下的腐蚀机理研究[J]. 金属学报, 2012, 48(7): 815-821.
, , , , , . STUDY ON THE CORROSION MECHANISM OF T2 COPPER CONDENSER TUBE UNDER THE HUMID ENVIRONMENT[J]. Acta Metall Sin, 2012, 48(7): 815-821.

全文: PDF(3420 KB)  
摘要: 研究了换热器中的T2紫铜管在为期2年的保养中因受残留H2O及挥发水蒸汽作用而出现泄漏降压的现象. 利用SEM, OM和体视显微镜观察发现, 在Cu管与不锈钢折流孔构成的所有缝隙部位都发生了严重的腐蚀, 而且在少数位置发生了穿孔. 润湿实验表明, T2紫铜管外表面与折流孔孔壁之间形成的缝隙足够小, 以至于可以对Cu管外表面上结露的薄水膜产生虹吸作用, 形成连接Cu管表面与折流孔孔壁的液体. 因此, 在Cu管外表面与缝隙部位Cu管间存在供氧差异, Cu管外表面为富氧区, 而缝隙部位Cu管表面为贫氧区. 电位监测结果表明: 表面带有氧化皮的外部Cu管的电极电位高于缝隙部位裸Cu管的电极电位, 二者之间形成电偶电池, 折流孔部位的Cu管表面为阳极区, 外部Cu管表面为阴极区. 供氧差异和电偶的联合作用是导致Cu管折流孔部位发生严重局部腐蚀的原因.
关键词 T2紫铜管腐蚀氧浓差电池电偶电池    
Abstract:During the maintenance of two years, T2 copper tube in a heat exchanger has leaked, it can be deduced that the residual water and volatile water vapor would play an important role in leakage. By SEM, OM, stereo microscope observation, it was found that serious corrosion happened on the surface of copper in the gaps constituted by copper tube and stainless steel baffle holes, and perforation occurred in a few locations. Wetting experiments show that the gap formed between the T2 copper tube and the baffle hole wall is small enough that it could produce siphon liquid film, which could connect the copper tube surface and baffle hole. Therefore there is a difference of oxygen supply between the copper tube outer surface and the copper tube in the gap site, the outer surface of copper tube becomes oxygen-rich zone and the copper tube in the gap site oxygen-poor zone. Potential monitoring results show that the potential of the external surface of copper tube with an oxide is higher than that of copper in the gap site leading to a galvanic cell formed between them. The surface of copper in the gap site is anode region and the external copper tube surface is cathode region. The differences of oxygen supply combined the effect of the galvanic cell leads to the severe localized corrosion of copper tube in the gap site.
Key wordsT2 copper tube    corrosion    oxygen concentration cell    galvanic battery
收稿日期: 2012-03-05     
基金资助:

国家自然科学基金资助项目51071160

作者简介: 王长罡, 男, 1985年生, 博士生
[1] Ji L N, Gong Y, Yang Z G. Microelectron Reliab, 2010; 50: 1163

[2] Khajavi M R, Abdolmaleki A R, Adibi N, Mirfendereski S. Eng Failure Analys, 2007; 14: 731

[3] Dorri M, Harandizadeh D. Eng Failure Analys, 2012; 19: 87

[4] Chandra K, Kain V, Dey G K, Shetty P S, Kishan R. Eng Failure Analys, 2010; 17: 587

[5] Lee S H, Kim J G, Koo F Y. Eng Failure Analys, 2010; 17: 1424

[6] Pantazopoulos G, Vazdirvanidis A, Tsinopoulos G. Eng Failure Analys, 2011; 18: 649

[7] Edwards M, Ferguson J F, Reiber S H. J AmWaterWorks Assoc, 1994; 87(7): 74

[8] McDougall J L, Stevenson M E. J Failure Analys Prev, 2005; 5(1): 13

[9] Stevenson M E, Barkey M E, McDougall J L. J Failure Analys Prev, 2005; 5(6): 25

[10] Duffner D H. J Failure Analys Prev, 2005; 5(1): 79

[11] Pantazopoulos G, Tsinopoulos G. J Failure Analys Prev, 2006; 6(6): 8

[12] Kuznicka B. Eng Failure Analys, 2009; 16: 2382

[13] Olszewski A M. J Failure Analys Prev, 2007; 7(4): 238

[14] Itoh M, Minato A, Aizawa M, Tanno K. Boshoku Gijtsu, 1984; 33: 504

[15] Levine R S. Plant Eng, 1978; 32: 101

[16] Baba H, Kodama T, Fujii T. Trans Natl Res Inst Met, 1986; 28: 248

[17] Christy A G, Lowe A, Otieno–Alego V, Stoll M, Webster R D. J Appl Electrochem, 2004; 34: 225

[18] Sequeira C A C. Br Corros J, 1995; 30: 137

[19] Sosa M, Patel S, Edwards M. Corrosion, 1999; 55: 1069

[20] Edwards M, Rehring J, Mayer T. Corrosion, 1994; 50: 366

[21] Fujii T, Kodama T, Baba H. Corros Sci, 1984; 24: 901

[22] Drogowska M, Brossard L, M´enard H. Surf Coat Technol, 1988; 34: 383

[23] Fernandes P J L. Eng Failure Analys, 1998; 5: 35

[24] Myers J R, Cohen A. Mater Performance, 1995; 34(10): 60

[25] Mattsson E. Br Corros J, 1980; 15: 6

[26] Huang N B, Liang C H. Refrigeration, 2001; 20(2): 25

(黄乃宝, 梁成浩. 制冷. 2001; 20(2): 25)
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[4] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[5] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[6] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[7] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[8] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[9] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[10] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[11] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[12] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[13] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[14] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[15] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.