Please wait a minute...
金属学报  2012, Vol. 48 Issue (6): 725-732    DOI: 10.3724/SP.J.1037.2012.00025
  论文 本期目录 | 过刊浏览 |
复合添加Y和Nd对Mg-Li合金显微组织及室温压缩织构的影响
崔崇亮,朱天龙,冷哲,巫瑞智,张景怀,张密林
哈尔滨工程大学材料科学与化学工程学院, 超轻材料与表面技术教育部重点实验室,哈尔滨 150001
EFFECTS OF COMBINED ADDITION OF Y AND Nd ON MICROSTRUCTURE AND TEXTURE AFTER COMPRESSION OF Mg-Li ALLOY AT ROOM TEMPERATURE
CUI Chongliang,ZHU Tianlong,LENG Zhe,WU Ruizhi,ZHANG Jinghuai,ZHANG Milin
Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
全文: PDF(9262 KB)  
摘要: 采用OM, SEM, XRD, EBSD及电子万能试验机, 对比研究了Mg-5Li-3Al-2Zn和Mg-5Li-3Al-2Zn-1.2Y-0.8Nd铸态合金的显微组织、力学性能以及室温单向压缩后的织构演变. 研究发现, 复合添加Y和Nd 2种稀土元素后, 合金中絮丝状AlLi相明显减少, 晶粒得到显著细化, 平均尺寸在30 μm左右. 2种合金的塑性表现良好, 加入少量稀土的合金室温压缩的变形量可达到27%. 复合添加的稀土元素大幅度降低了Mg晶格的c/a值, 显著弱化了合金的基面织构,激活了锥面滑移系的同时, 也使得室温下少见的柱面滑移被激活.
关键词 YNdMg-Li合金室温压缩织构    
Abstract:Due to the super light-weight property, Mg-Li alloys are very promising in the fields of aerospace and military defense. Up to now, many studies about hot deformation behavior of Mg-Li alloys have been reported. However, there are little researches on their room-temperature deformation behavior. Therefore, the plastic deformation mechanism of Mg-Li alloys needs further investigated. It is known that addition of RE to Mg alloys could cause solid solution strengthening, fine grain strengthening and secondary phase strengthening. Nevertheless, reports refer to the effect of RE on the texture of Mg-Li alloys. This work was devoted to study the microstructure, mechanical properties and the evolution of texture after compression at room-temperature of the as-cast Mg-5Li-3Al-2Zn and Mg-5Li-3Al-2Zn-1.2Y-0.8Nd alloys with OM, SEM, XRD, ODF and EBSD techniques as well as material testing machine. The results show that with the addition of Y and Nd, most of the filamentous AlLi intermetallic compounds are suppressed and substituted by other two intermetallics Al2Y and Al11Nd3. Meanwhile, the grains are refined with the average size of\linebreak 30 μm. ODF analysis indicates that for Mg-5Li-3Al-2Zn alloy, when the strain is 0.17 the C-axis of most grains is roughly 75° form ND, while in Mg-5Li-3Al-2Zn-1.2Y-0.8Nd, when the strain is 0.10 the strong prismatic texture appeares, which means that the <1010> of most grains parallel to ND. Both of the two alloys exhibit high plasticity when tested at room-temperature, while the compression deformation of the alloy containing Y and Nd can reach up to 27%. The combined addition of Y and Nd significantly reduces the c/a of the magnesium lattice, weakes basal texture, activates the pyramidal slip system and, especially, activates the prismatic slip system which seldom occurs at room-temperature in magnesium alloys.
Key wordsY    Nd    Mg-Li alloy    compression at room temperature    texture
收稿日期: 2012-01-11     
ZTFLH: 

TG146.2

 
基金资助:

国家自然科学基金项目51001034, 中央高校基本科研业务费专项资金项目HEUCF201210004以及吉林大学汽车材料教育部重点实验室开放基金项目资助

通讯作者: 巫瑞智     E-mail: ruizhiwu2006@yahoo.com
Corresponding author: cui chongliang     E-mail: ruizhiwu2006@yahoo.com
作者简介: 崔崇亮, 男, 1984年生, 博士生

引用本文:

崔崇亮,朱天龙,冷哲,巫瑞智,张景怀,张密林. 复合添加Y和Nd对Mg-Li合金显微组织及室温压缩织构的影响[J]. 金属学报, 2012, 48(6): 725-732.
CUI Chong-Liang, WU Rui-Zhi, LING Zhe, ZHANG Jing-Huai, ZHANG Mi-Lin. EFFECTS OF COMBINED ADDITION OF Y AND Nd ON MICROSTRUCTURE AND TEXTURE AFTER COMPRESSION OF Mg-Li ALLOY AT ROOM TEMPERATURE. Acta Metall Sin, 2012, 48(6): 725-732.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00025      或      https://www.ams.org.cn/CN/Y2012/V48/I6/725

[1] Wu R Z, Qu Z K, Zhang M L.  Rev Adv Mater Sci, 2010; 24: 14

[2] Liang C P, Gong H R.  J Alloys Compd, 2010; 489: 130

[3] Sasaki T T, Yamamoto K, Honma T.  Scr Mater, 2008; 59: 1111

[4] Wang T, Zhang M L, Niu Z Y, Liu B.  J Rare Earths, 2006; 24: 797

[5] Zhang M L, Meng X R, Wu R Z, Cui C L, Wu L B.  Kovove Mater,2010; 211: 216

[6] Liu X H, G J Du, R Z Wu, Z Y Niu, M L Zhang.  J Alloys Compd,2011; 509: 9558

[7] Li J Q, Qu Z K, Wu R Z, Zhang M L.  Mater Sci Eng, 2011; A528: 3915

[8] Wu L B, Cui C L, Wu R Z, Zhang M L.  Mater Sci Eng, 2011; A528: 2174

[9] Drozd Z, Trojanova Z, Kudela S.  J Alloys Compd, 2004; 378: 192

[10] Mishra R K, Gupta A K, Rao P R, Sachdev A K, Kumar A M, Luo A A. Scr Mater, 2008; 59: 562

[11] Luo J R, Liu Q, Liu W, Godfrey A.  Acta Metall Sin, 2011; 12: 1567

     (罗晋如, 刘庆, 刘伟, Godfrey Andrew. 金属学报, 2011; 12: 1567)

[12] Liu T, Zhang W, Wu S D.  Mater Sci Eng, 2003; A360: 345

[13] Li L, Zhou T T, Li H X, Chen C Q, Wu Q L, Zhang Q Q. Mater Sci Forum, 2007; 546-549: 347

[14] Xiang Q, Wu R Z, Zhang M L.  J Alloys Compd, 2009; 477: 832

[15] Mukai T, Yamanoi M, Watanabe H.  Scr Mater, 2001; 45: 89

[16] Meng X R, Wu R Z, Zhang M L, Wu L B, Cui C L.  J Alloys Compd,2009; 486: 722

[17] Ando S, Tonda H.  Mater Sci Forum, 2000; 350: 43

[18] Agnew S R, Yoo M H, Tome C N.  Acta Metall, 2001; 49: 4277

[19] Stanford N, Atwell D, Barnett M R.  Acta Metall, 2010; 58: 6773

[20] Liu T, Wang Y D, Wu S D.  Scr Mater, 2004; 51: 1057

[21] Dong H W, Wang L D, Wu Y M, Wang L M.  J Alloys Compd,2010; 506: 468

[22] Takuda H, Kikuchi S, Yoshida N, Okahara H.  Mater Trans,2003; 44: 2266

[23] Song Y, Shan D, Chen R, Han E H.  Corros Sci, 2009; 51: 1087

[24] Wei S Q, Zhang M L, Han W, Yan Y D, Zhang B.  Acta Metall Sin,2011; 47: 173

     (魏树权, 张密林, 韩伟, 颜永得, 张斌. 金属学报, 2011; 47: 173)

[25] Ye K, Chen Y, Zhang M L, Han W, Yan Y D, Wei S Q.  Chem Lett,2010; 28: 128

[26] Bohlen J, Yi S, Letzig D, Kainer K U.  Mater Sci Eng,2010; A527: 7092

[27] Hantzsche K, Bohlen J, Wendt J, Kainer K U, Yi S B,Letzig D.  Scr Mater, 2010; 63: 725

[28] Cui C L, Wu L B, Wu R Z, Zhang J H, Zhang M L. J Alloys Compd, 2011; 509: 9045

[29] Koike J.  Mater Sci Forum, 2003; 189: 419

[30] Li T Q, Liu Y B, Cao Z Y, Wu R Z, Zhang M L, Cheng L R,Jiang D M.  J Alloys Compd, 2011; 509: 7607

[31] Guo X T, Liu P J, Zeng D B.  J Chin Rare Earths, 2003; 21: 672

     (郭旭涛, 李培杰, 曾大本. 中国稀土学报, 2003; 21: 672)

[32] Chino Y, Kado M, Mabuchi M.  Mater Sci Eng, 2008; A494: 343

[33] Li Z J, Jin Q L, Jiang Y H, Zhou R.  Acta Metall Sin, 2009; 45: 924

     (李再久, 金青林, 蒋业华, 周荣. 金属学报, 2009; 45: 924)
[1] 孙衡,林小娉,周兵,赵圣诗,唐琴,董允. 定向凝固Mg-xGd-0.5Y合金的微观组织及拉伸变形行为[J]. 金属学报, 2020, 56(3): 340-350.
[2] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[3] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[4] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[5] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[6] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[7] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[8] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[9] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[10] 廖依敏, 丰敏, 陈明辉, 耿哲, 刘阳, 王福会, 朱圣龙. TiAl合金表面搪瓷基复合涂层与多弧离子镀NiCrAlY涂层的抗热腐蚀行为对比研究[J]. 金属学报, 2019, 55(2): 229-237.
[11] 顾晨, 杨平, 毛卫民. 轧制工艺对低牌号无取向电工钢相变退火组织、织构与磁性能的影响[J]. 金属学报, 2019, 55(2): 181-190.
[12] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[13] 冯宇超, 邢炜伟, 王寿龙, 陈星秋, 李殿中, 李依依. ODS钢中氧化物/铁素体界面捕氢行为的第一原理研究[J]. 金属学报, 2018, 54(2): 325-338.
[14] 陈良, 赵国群, 陈高进, 梁赵青, 张存生. LZ91 Mg-Li合金分流模挤压成形过程数值模拟与实验研究[J]. 金属学报, 2018, 54(2): 339-346.
[15] 郭策安, 陈明辉, 廖依敏, 苏北, 谢冬柏, 朱圣龙, 王福会. 模拟燃气热冲击条件下搪瓷基复合涂层的防护机理研究[J]. 金属学报, 2018, 54(12): 1825-1832.