Please wait a minute...
金属学报  2011, Vol. 47 Issue (7): 804-808    DOI: 10.3724/SP.J.1037.2011.00323
  论文 本期目录 | 过刊浏览 |
粒状腐蚀产物在管道中的沉积机理
姚军1, 2), Michael Fairweather2),  李宁1)
1) 厦门大学能源研究院, 厦门 361005
2) School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT, UK
DEPOSITION MECHANISM OF PARTICLE-LIKE CORROSION PRODUCT IN TURBULENT DUCT
YAO Jun1, 2), Michael Fairweather2), LI Ning1)
1) School of Energy Research, Xiamen University, Xiamen 361005
2) School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT, UK
引用本文:

姚军 Michael Fairweather 李宁. 粒状腐蚀产物在管道中的沉积机理[J]. 金属学报, 2011, 47(7): 804-808.
, , . DEPOSITION MECHANISM OF PARTICLE-LIKE CORROSION PRODUCT IN TURBULENT DUCT[J]. Acta Metall Sin, 2011, 47(7): 804-808.

全文: PDF(1025 KB)  
摘要: 利用大涡模拟方法和Lagrangian方法研究了腐蚀产物(颗粒)在核反应堆冷却回路管道中的沉积现象(Reynolds数2.5×105). 利用Lagrangian方法跟踪颗粒轨迹, 颗粒运动方程中包含牵引力、升力、浮力和重力. 流体和颗粒是单相耦合, 计算中忽略颗粒--颗粒间碰撞. 流场计算结果与实验数据以及直接数值模拟计算结果吻合良好. 计算结果显示, 小颗粒趋于沉积在管道中心处, 而大颗粒趋于沉积在管道边缘, 这种趋势随颗粒粒径增大而加强. 在近管道底部区域, 颗粒沉积分布密度随颗粒粒径的增大而提高, 小颗粒在底部分布均匀, 而大颗粒在流向速度低速区聚集.
关键词 腐蚀产物颗粒大涡模拟沉积    
Abstract:The deposition of corrosion products (particles) in cooling circuits of water-cooled nuclear reactors has been investigated using large eddy simulation and Lagrangian method (Reynolds number 2.5×105). A particle equation of motion including Stokes drag, lift, buoyancy and gravitational forces is used for particle trajectory analysis. The fluid-particle effect is considered and the particle-particle interact is ignored in this work. Results obtained from the fluid field calculation showed good agreement with experimental data and the predictions of direct numerical simulations. The particle size, drag force, shear-induced lift force and gravity all affected the particle deposition process. The small sized particles tended to deposite near the duct center while large sized particles tended to deposite near the duct edge, which become more obvious with increasing particle size. Close to the bottom of the duct, the particle number density increased with particle size increasing, and a high concentration of large particles appeared in the region with flow velocities lower than the mean, while small particles distribute evenly throughout the flow.
Key wordscorrosion product    particle    large eddy simulation (LES)    deposition
收稿日期: 2011-05-23     
基金资助:

福建省科学和技术规划项目2007H2002及英国工程和自然科学基金项目EP/C549465/1资助

作者简介: 姚军, 男, 1971年生, 副教授
[1] Comley G C W. Prog Nucl Energy, 1985; 16: 41

[2] Murray A P. Nucl Technol, 1986; 74: 324

[3] Hirschberg G, Baradlai P, Varga K, Myburg G, Schunk J, Tilky P, Stoddart P. J Nucl Mater, 1999; 265: 273

[4] Aizawa M, Chiba Y, Hosokawa H, Ohsumi K, Uchida S,

Ishizawa N. J Nucl Sci Technol, 2002; 39: 1041

[5] Lin C C. Prog Nucl Energy, 2009; 51: 207

[6] Germano M. J Fluid Mech, 1992; 238: 325

[7] Piomelli U, Liu J. Phys Fluids, 1995; 7: 839

[8] di Mare F, Jones W P. Int J Heat Fluid Flow, 2003; 24: 606

[9] Rhie C M, Chow W L. AIAA J, 1983; 21: 525

[10] Choi H, Moin P. J Comput Phys, 1994; 13: 1

[11] Yao J, Zhao Y L, Hu G L, Fan J R, Cen K F. Aerosol Sci Technol, 2009; 43: 174

[12] Saffman P G. J Fluid Mech, 1965; 22: 385

[13] Saffman P G. J Fluid Mech, 1968; 31: 624

[14] Mei P. Int J Multiphas Flow, 1992; 18: 145

[15] Yao J, Zhang Y, Wang C H, Matsusaka S, Masuda H. Ind Eng Chem Res, 2004; 43: 7181

[16] Yao J, Zhang Y, Wang C H, Liang C Y. AIChE J, 2006; 52: 3775

[17] Armenio V, Fiorotto V. Phys Fluids, 2001; 13: 2437

[18] Gessner F B, Emery A F. J Fluid Eng, 1981; 103: 445

[19] Gessner F B, Po J K, Emery A F. In: Durst F, Launder B E, Schmidt F W, eds., Measurements of Developing Turbulent Flow in a Square Duct. Berlin: Springer Verlag, 1979: 279

[20] Pan Y, Banerjee S. Phys Fluids, 1996; 8: 2733

[21] Pedinotti S, Mariotti G, Banerjee S. Int J Multiphas Flow, 1992; 18: 927

[22] Eaton J K, Fessler J R. Int J Multiphas Flow, 1994; 20: 169

[23] Zhang H F, Ahmadi G. J Fluid Mech, 2000; 406: 55
[1] 卢毓华, 王海舟, 李冬玲, 付锐, 李福林, 石慧. 基于高通量场发射扫描电镜建立的高温合金 γ' 相定量统计表征方法[J]. 金属学报, 2023, 59(7): 841-854.
[2] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[3] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[4] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[5] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[6] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[7] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[8] 刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.
[9] 郭雨静, 鲍皓明, 符浩, 张洪文, 李文宏, 蔡伟平. 金属Rb纳米溶胶的超声乳化制备及点火特性[J]. 金属学报, 2022, 58(6): 792-798.
[10] 杭弢, 薛琦, 李明. 无模板电沉积金属微纳米阵列材料研究进展[J]. 金属学报, 2022, 58(4): 486-502.
[11] 高运明, 何林, 秦庆伟, 李光强. 利用ZrO2 固体电解质研究Na3AlF6-SiO2 熔盐中的电沉积[J]. 金属学报, 2022, 58(10): 1292-1304.
[12] 邱龙时, 赵婧, 潘晓龙, 田丰. 高速钢表面TiN薄膜的界面疲劳剥落行为[J]. 金属学报, 2021, 57(8): 1039-1047.
[13] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[14] 王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.
[15] 周洪宇, 冉珉瑞, 李亚强, 张卫冬, 刘俊友, 郑文跃. 颗粒尺寸对金刚石/Al封装基板热物性的影响[J]. 金属学报, 2021, 57(7): 937-947.