Please wait a minute...
金属学报  2011, Vol. 47 Issue (7): 797-803    DOI: 10.3724/SP.J.1037.2011.00316
  论文 本期目录 | 过刊浏览 |
异材焊接件A508/52M/316L在高温水环境中的应力腐蚀破裂
李光福1), 李冠军1), 方可伟1), 彭君1), 杨武1), 张茂龙2), 孙志远2)
1) 上海材料研究所上海市工程材料应用评价重点实验室, 上海 200437
2) 上海电气核电设备有限公司, 上海 201306
STRESS CORROSION CRACKING BEHAVIOR OF DISSIMILAR METAL WELD A508/52M/316L IN HIGH TEMPERATURE WATER ENVIRONMENT
LI Guangfu1), LI Guanjun1), FANG Kewei1), PENG Jun1), YANG Wu1), ZHANG Maolong2), SUN Zhiyuan2)
1) Shanghai Key Lab for Engineering Materials Evaluation, Shanghai Research Institute of Materials, Shanghai 200437
2) Shanghai Electric Nuclear Power Equipment Co.,Ltd., Shanghai 201306
引用本文:

李光福 李冠军 方可伟 彭君 杨武 张茂龙 孙志远. 异材焊接件A508/52M/316L在高温水环境中的应力腐蚀破裂[J]. 金属学报, 2011, 47(7): 797-803.
, , , , , , . STRESS CORROSION CRACKING BEHAVIOR OF DISSIMILAR METAL WELD A508/52M/316L IN HIGH TEMPERATURE WATER ENVIRONMENT[J]. Acta Metall Sin, 2011, 47(7): 797-803.

全文: PDF(1514 KB)  
摘要: 采用慢应变速率实验(SSRT)方法, 研究了先进的异材焊接件A508/52M/316L在模拟压水堆一回路290 ℃高温水环境中的应力腐蚀破裂(SCC)特性. 实验在-780 mV至+200 mV范围的电位下进行, 模拟一回路水化学从低O含H的理想低电位状态到溶解O$_{2}$明显超标的高电位状态的服役环境. 该焊接件显微组织和化学成分分布较复杂, 显著的变化发生在A508/52M和52M/316L 2个界面附近. 在SSRT拉伸试样的典型位置处加工了同样尺寸的尖锐缺口, 以模拟应力集中和加速实验, 并比较这些典型位置的SCC 敏感性. 结果表明, 当电位位于-780 mV至-300 mV范围时, SSRT试样总是以韧性断裂形式在镍基合金焊缝中部发生断裂. 当电位升到-200 mV至+200 mV范围时, 试样发生显著的SCC脆断, A508/52M界面区周围是该焊接件最脆弱的部位, 在该界面和附近的A508热影响区发生穿晶应力腐蚀破裂(TGSCC), 在紧邻界面的镍基合金焊缝薄层发生沿晶应力腐蚀破裂(IGSCC). 讨论了破裂机理和实验结果的工程意义.
关键词 压水堆核电站一回路水环境异材焊接件应力腐蚀破裂电位水化学    
Abstract:The stress corrosion cracking (SCC) behavior of advanced dissimilar metal weld A508/52M/316L in simulated primary water environments of pressurized water reactor (PWR) at 290 ℃ was investigated by means of slow strain rate testing (SSRT). The tests were performed at various applied electrode potentials which correspond to the electrochemical conditions of the weld in various water environments, from low potentials with ideal water chemistry to high potentials with oxygen-contaminated water chemistry. The weld exhibits complicated microstructure and chemical composition distributions, especially, significant changes appear around the A508/52M interface and the 52M/316L interface. For tensile specimens in SSRT, sharp notches were machined at important and typical places, i.e., at the two interfaces and in the bulk parts of the low alloy steel, Ni base weld metal and stainless steel of the weld. Results showed that the specimens always failed in bulk zone of the Ni base weld metal with ductile appearances when tested in the potential range from -780 mV to -300 mV (vs SHE). When electrode potential was raised into the range from -200 mV to +200 mV which corresponds to oxygen-contaminated water chemistry, the weld exhibits significant SCC. The area around the A508/52M interface is the weakest place, transgranular stress corrosion cracking (TGSCC) happened both along the interface and in A508 heat affected zone (HAZ), intergranular stress corrosion cracking (IGSCC) occurred in the Ni base weld metal close to the interface. The cracking mechanism and the engineering practical significance were discussed.
Key wordspressurized water reactor    primary water    dissimilar metal weld    stress corrosion cracking    electrode potential    water chemistry
收稿日期: 2011-05-19     
基金资助:

国家核电专项基金项目2011ZX06004-009, 国家重点基础研究发展计划项目2011CB610506和上海市科委项目09dz1100105资助

作者简介: 李光福, 男, 1962年生, 教授级高级工程师
[1] Lundin C D. Weld Res, 1982; 61(suppl): 58

[2] Karlsson L. Weld World, 1995; 36: 125

[3] Bamford W H, Foster J, Hsu K R, Tunon–Sanjur L, McIlree A. In: Ford F P, Was G S, Nelson J L, eds., Proc 10th Int Conf Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, USA: NACE International, 2002, CD–ROM

[4] Jenssen A, Norrgard K, Lagerstron J, Embring G, Tice D R. In: Ford F P, Was G S, Nelson J L, eds., Proc 10th Int Conf Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, USA: NACE International, 2002, CD–ROM

[5] Li G F, Yang W. Nucl Saf, 2003; (2): 37

(李光福, 杨武. 核安全, 2003; (2): 37)

[6] Andresen P, Morra M, Ahluwalia A, Hickling J, Wilson J. In: King P, Allen T, Busby J, eds., Proc 13th Int Conf Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Canada: Canadian Nuclear Society, 2007, CD–ROM

[7] Shoji T, Lu Z, Yamazaki S. In: Allen T, Busby J, Iievbare G, eds., Proc 14th Int Conf Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, USA: American Nuclear Society, 2009, CD–ROM

[8] Alexandreanu B, Yang Y, Chen Y, Shack W. J. In: Allen T, Busby J, Iievbare G, eds., Proc 14th Int Conf Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, USA: American Nuclear Society, 2009, CD–ROM

[9] Scott P M. Corros Sci, 1985; 25: 583

[10] Roborg B, Molander A A. In: Roberts J T A, Weeks J R, Theus G J, eds., Proc 2nd Int Symp Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, USA: American Nuclear Society, 1985: 419

[11] Macdonald D D, Song H, Makela K, Yoshida K. Corrosion, 1993; 49: 8

[12] Li G F, Congleton J. Corros Sci, 2000; 42: 1005

[13] Li G F, Charles E A, Congleton J. Corros Sci, 2001; 43: 1963

[14] Yang W, Li G F, Huang C B, Zhou J J, Lu Z P. Chin J Mech Eng, 2010; 23: 677

[15] Ford P. Corrosion, 1996; 52: 375

[16] Andresen P L, Young L M. In: Gold R, McIlree A, eds., Proc 7th Int Symp Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, USA: NACE International, 1995: 579

[17] Peng Q J, Li G F, Shoji T. J Nucl Sci Technol, 2003; 40: 397
[1] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[2] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[3] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[4] 马荣耀, 赵林, 王长罡, 穆鑫, 魏欣, 董俊华, 柯伟. 静水压力对金属腐蚀热力学及动力学的影响[J]. 金属学报, 2019, 55(2): 281-290.
[5] 陈闽东, 张帆, 刘智勇, 杨朝晖, 丁国清, 李晓刚. 金属材料在三亚海水中的腐蚀电位序及合金成分对耐蚀性的影响[J]. 金属学报, 2018, 54(9): 1311-1321.
[6] 程钊, 金帅, 卢磊. 电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2018, 54(3): 428-434.
[7] 赵林, 穆鑫, 董俊华, 伍立坪, 王长罡, 柯伟. AH32长尺试样在模拟海洋潮差区腐蚀行为的电偶电流研究[J]. 金属学报, 2017, 53(11): 1445-1452.
[8] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[9] 王家贞,王俭秋,韩恩厚. 800合金在300 ℃ NaOH和ETA溶液中的腐蚀行为*[J]. 金属学报, 2016, 52(5): 599-606.
[10] 强少明,江来珠,李劲,刘天伟,吴艳萍,蒋益明. 双环电化学动电位再活化法评价11Cr铁素体不锈钢晶间腐蚀敏感性*[J]. 金属学报, 2015, 51(11): 1349-1355.
[11] 张志明, 王俭秋, 韩恩厚, 柯伟. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析[J]. 金属学报, 2015, 51(1): 85-92.
[12] 穆鑫, 魏洁, 董俊华, 柯伟. 牺牲阳极保护对Q235B钢在模拟海洋潮差区间腐蚀行为的影响[J]. 金属学报, 2014, 50(11): 1294-1304.
[13] 刘侠和, 吴欣强, 韩恩厚. 温度对国产核级316L不锈钢在加Zn水中电化学腐蚀性能的影响*[J]. 金属学报, 2014, 50(1): 64-70.
[14] 张利涛,王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为[J]. 金属学报, 2013, 49(8): 911-916.
[15] 范林,刘智勇,杜翠薇,李晓刚. X80管线钢高pH应力腐蚀开裂机制与电位的关系[J]. 金属学报, 2013, 49(6): 689-698.