Please wait a minute...
金属学报  2011, Vol. 47 Issue (7): 965-970    DOI: 10.3724/SP.J.1037.2011.00208
  论文 本期目录 | 过刊浏览 |
辐照与He协同作用对低活度铁素体/马氏体钢F82H微观结构的影响
佟振峰,  戴勇,  杨文, 杨启法
1) 中国原子能科学研究院, 北京 102413
2) Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
EFFECTS OF RADIATION AND He ON MICROSTRUCTURES OF LOW ACTIVE FERRITIC/MARTENSITIC STEEL F82H
TONG Zhenfeng, DAI Yong, YANG Wen, YANG Qifa
1) China Insitute of Atomic Energy, Beijing 102413
2) Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
引用本文:

佟振峰 戴勇 杨文 杨启法. 辐照与He协同作用对低活度铁素体/马氏体钢F82H微观结构的影响[J]. 金属学报, 2011, 47(7): 965-970.
, . EFFECTS OF RADIATION AND He ON MICROSTRUCTURES OF LOW ACTIVE FERRITIC/MARTENSITIC STEEL F82H[J]. Acta Metall Sin, 2011, 47(7): 965-970.

全文: PDF(1031 KB)  
摘要: 利用散裂中子源模拟聚变环境辐照F82H铁素铁/马氏体钢, 辐照温度为150-450 ℃, 辐照剂量为6.1-20.2 dpa. 对不同温度和剂量辐照后样品的微观结构进行了TEM观察, 结果表明, 当辐照温度高于208 ℃, 辐照剂量高于9.5 dpa, He浓度高达680×10-6时的样品中存在尺寸约为1.6 nm的高密度 He泡. 分析了辐照剂量、温度以及嬗变He浓度对F82H钢微观结构的影响.
关键词 低活度铁素体/马氏体钢辐照离位损伤He泡    
Abstract:Low active ferritic/martensitic steel, F82H, has been developed as a candidate material for structural
applications of fusion reactors because it has relatively low shifts in ductile-to-brittle transition temperature
(DBTT) and excellent irradiation swell resistance. More works have been done in recent years on the
microstructure and mechanical properties of F82H steel before and after irradiation, but most of the tested samples were
irradiated at low temperature (<400 ℃). In this work, the microstructure of F82H steel irradiated in the Swiss
spallation neutron source SINQ in a temperature range of 150-450 ℃ and a dose range of 6.1-20.2 dpa was
studied. Defect clusters and He bubble were observed by TEM in the irradiated specimens.
The results showed that there existed high density He bubbles with size of 1.6 nm under irradiation temperature higher than
208℃, irradiation dose higher than 9.5 dpa and He concentration 680×10-6. The effects of
irradiation dose, irradiation temperature and He concentration on microstructure of F82H steel were discussed.
Key wordslow active ferritic/martensitic steel    radiation    displacement damage    He bubble
收稿日期: 2011-04-06     
基金资助:

国家重点基础研究发展计划项目2011CB610503和国家自然科学基金项目10975194资助

作者简介: 佟振峰, 男, 1977年生, 副研究员
[1] Klueh R L, Harries D R. High–Chromium Ferritic and Martensitic Steels for Nuclear Applications. West Conshohocken, PA: ASTM, 2001: 19

[2] Kohyama A, Hishinuma A, Gelles D S, Klueh R L, Dietz W, Ehrlich K. J Nucl Mater, 1996; 233–237: 138

[3] Miwa Y, Wakai E, Shiba K, Hashimoto N, Robertson J P, Rowcli A F, Hishinuma A. J Nucl Mater, 2000; 283–287: 334

[4] Schaublin R, Spatig P, Victoria M. J Nucl Mater, 1998; 258–263: 1178

[5] Sawai T,Wakai E, TomitaT, NaitoA, Jitsukawa S. J Nucl Mater, 2002; 307–311: 312

[6] Spatig P, Schaublin R, Gyger S, Victoria M. J NuclMater, 1998; 258–263: 1345

[7] Shiba K, Suzuki M, Hishinuma A. J Nucl Mater, 1996; 233–237: 309

[8] Jitsukawa S, Tamura M, vander Schaaf B, Klueh R L, Alamo A, Petersen C, Schirra M, Spaetig P, Odette G R, Tavassoli A A, Shiba K, Kohyama A, Kimura A. J Nucl Mater, 2002; 307–311: 179

[9] Stamm U, Schroeder H. J Nucl Mater, 1988; 155–157: 1059

[10] Ullmaier H. Radiat Eff, 1983; 78: 1

[11] Klueh R L, Hashimoto N, Sokolov M A, Shiba K, Jitsukawa S. J Nucl Mater, 2006; 357: 156

[12] Malaplate J, Vincent L, Averty X, Henry J, Marini B. Eng Fract Mech, 2008; 75: 3570

[13] Henry J, Vincent L, Averty X, Marini B, Jung P. J Nucl Mater, 2007; 367–370: 411

[14] Tong Z, Dai Y. J Nucl Mater, 2010; 398: 43

[15] Gupta G, Jiao Z, Ham A N, Busby J T, Was G S. J Nucl Mater, 2006; 351: 162

[16] Dai Y, Foucher Y, James M R, Oliver B M. J Nucl Mater, 2003; 318: 167

[17] Jiao Z, Ham N, Was G S. J Nucl Mater, 2007; 367–370: 440

[18] Trinkaus H, Singh B N. J Nucl Mater, 2003; 323: 229

[19] Jia X, Dai Y. J Nucl Mater, 2006; 356: 105
[1] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[2] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[3] 朱小绘, 刘向兵, 王润中, 李远飞, 刘文庆. 290℃氩离子辐照对Fe-Cu合金微观组织的影响[J]. 金属学报, 2022, 58(7): 905-910.
[4] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[5] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[6] 易晓鸥, 韩文妥, 刘平平, FERRONIFrancesco, 詹倩, 万发荣. 金属W中辐照缺陷的产生、演化与热回复机制[J]. 金属学报, 2021, 57(3): 257-271.
[7] 刘悦, 汤鹏正, 杨昆明, 沈一鸣, 吴中光, 范同祥. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展[J]. 金属学报, 2021, 57(2): 150-170.
[8] 李天昕, 卢一平, 曹志强, 王同敏, 李廷举. 难熔高熵合金在反应堆结构材料领域的机遇与挑战[J]. 金属学报, 2021, 57(1): 42-54.
[9] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[10] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[11] 吴玉程. 核聚变堆用W及其合金辐照损伤行为研究进展[J]. 金属学报, 2019, 55(8): 939-950.
[12] 邓平,孙晨,彭群家,韩恩厚,柯伟,焦治杰. 核用304不锈钢辐照促进应力腐蚀开裂研究[J]. 金属学报, 2019, 55(3): 349-361.
[13] 张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松. 碳化物/氧化物弥散强化钨基材料研究进展[J]. 金属学报, 2018, 54(6): 831-843.
[14] 张天慈, 王海涛, 李正操, SCHUT Henk, 张征明, 贺铭, 孙玉良. 国产RPV钢铁离子辐照脆化行为的正电子湮灭研究[J]. 金属学报, 2018, 54(4): 512-518.
[15] 邓平, 彭群家, 韩恩厚, 柯伟, 孙晨, 夏海鸿, 焦治杰. 国产核用不锈钢辐照损伤研究[J]. 金属学报, 2017, 53(12): 1588-1602.