Please wait a minute...
金属学报  2017, Vol. 53 Issue (12): 1588-1602    DOI: 10.11900/0412.1961.2017.00117
  本期目录 | 过刊浏览 |
国产核用不锈钢辐照损伤研究
邓平1,2, 彭群家1,3(), 韩恩厚1, 柯伟1, 孙晨3, 夏海鸿3, 焦治杰4
1 中国科学院金属研究所中科院核用材料与安全性评价重点实验室 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
3 国家电投集团科学技术研究院有限公司 北京 102209
4 Department of Nuclear Engineering and Radiological Sciences, University of Michigan,Ann Arbor, MI 48109, U.S.A.
Study of Irradiation Damage in Domestically Fabricated Nuclear Grade Stainless Steel
Ping DENG1,2, Qunjia PENG1,3(), En-Hou HAN1, Wei KE1, Chen SUN3, Haihong XIA3, Zhijie JIAO4
1 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 State Power Investment Corporation Research Institute, Beijing 102209, China
4 Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, U.S.A.
引用本文:

邓平, 彭群家, 韩恩厚, 柯伟, 孙晨, 夏海鸿, 焦治杰. 国产核用不锈钢辐照损伤研究[J]. 金属学报, 2017, 53(12): 1588-1602.
Ping DENG, Qunjia PENG, En-Hou HAN, Wei KE, Chen SUN, Haihong XIA, Zhijie JIAO. Study of Irradiation Damage in Domestically Fabricated Nuclear Grade Stainless Steel[J]. Acta Metall Sin, 2017, 53(12): 1588-1602.

全文: PDF(11411 KB)   HTML
摘要: 

采用2 MeV质子束在360 ℃对国产核用304不锈钢试样进行了辐照实验,利用显微硬度仪、透射电子显微镜(TEM)和三维原子探针(3DAP)等研究了材料的辐照损伤,分析了辐照剂量对辐照损伤演化的影响规律。结果表明,304不锈钢辐照损伤微观结构以位错环和少量孔洞为主,位错环的数量密度为1022 m-3量级,平均尺寸小于10 nm。材料在晶界和位错环处发生元素偏析,其中Cr、Ni在晶界和位错环处偏析程度相近,而Si在位错环处的偏析程度数倍于晶界。位错环平均尺寸和数量密度、晶界偏析程度以及辐照硬化程度均随辐照剂量增加而增加,并在3.0~5.0 dpa范围内趋于饱和。

关键词 核用不锈钢质子辐照位错环辐照偏析辐照硬化    
Abstract

The radiation-induced segregation (RIS) and microstructure evolution such as dislocation loops and cavities are major microstructural causes for the irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steel (SS) core components. While a couple of studies have been reported on the irradiation induced damage in nuclear grade (NG) austenitic SS, the evolution of dislocation loop density and size and its correlation with the mechanical properties have still remained incompletely understood. In addition, the correlation between the segregation at the grain boundary and that at the dislocation loop has received limited attentions. In particular, there is still a lack of a systematic study of the irradiation damage in domestically fabricated NG austenitic SS. In this work, the proton-irradiation induced microstructural damage in domestically fabricated 304NG SS was characterized, in an effort to correlate the RIS and the dislocation loop density and size with the irradiation dose, as well as the dislocation loop density and size with the radiation-induced hardening. The results revealed that the radiation-induced microstructure damage was mainly dislocation loops with a few micro-voids. The loop density was in the order of 1022 m-3 with an average size of <10 nm. The square root of the product of loop density and size (Nd)0.5, scaled linearly with the square root of irradiation dose with a factor of 6.8×103 dpa-0.5mm-1. The loops were believed to be mainly responsible for the hardening in 304NG SS, which also scaled linearly with (Nd)0.5 with a factor of 1.16×10-2 HV0.025mm. A comparative analysis about the segregation at the grain boundary and at the dislocation loop was conducted. While the depletion of Cr and enrichment of Ni at the dislocation loop and grain boundary showed no difference, the enrichment of Si at the dislocation loop could be of about 6 times of that at the grain boundary. In addition, the loop density and loop size, as well as RIS and radiation-induced hardening were all increased by a higher dose and tended to saturate by a dose of 3.0~5.0 dpa.

Key wordsnuclear grade stainless steel    proton irradiation    dislocation loop    radiation-induced segregation    radiation-induced hardening
收稿日期: 2017-04-06     
ZTFLH:  TG139.4  
基金资助:科技部国际科技合作专项项目No.2014DFA50800和国家自然科学基金项目No.51571204
作者简介:

作者简介 邓 平,男,1989年生,博士生

图1  辐照试样、硬度测量位置以及TEM试样取样示意图
图2  3DAP针尖制备过程
图3  304不锈钢辐照前后的TEM明场像
图4  304不锈钢辐照前后的TEM暗场像
图5  不同辐照剂量下304不锈钢中位错环的尺寸分布
图6  位错环平均尺寸和数量密度随辐照剂量的变化
Dose N d Microhardness Irradiation hardening Δσ
dpa 1022 m-3 nm HV0.025 HV0.025 MPa
0 - - 190.9±12.6 - -
0.5 0.364 5.81 247.8±11.8 56.9 160.4
1.5 1.423 7.25 294.2±20.7 103.3 354.3
3.0 1.804 8.61 332.3±17.8 141.4 434.7
5.0 2. 014 9.34 362.1±15.2 171.2 478.4
表1  304不锈钢辐照损伤结构和辐照硬化值统计
图7  不同辐照剂量下304不锈钢中孔洞的TEM明场像
图8  辐照致304不锈钢中晶界偏析分析
图9  304不锈钢经3.0 dpa辐照后晶内偏析的3DAP分析
图10  304不锈钢经3.0 dpa辐照后晶内偏析的3DAP等浓度面分析
图11  位错环处成分偏析的3DAP分析结果
图12  显微硬度随辐照剂量变化和辐照硬化与辐照剂量的关系
图13  位错环数量密度和直径乘积的平方根(Nd)0.5随辐照剂量的变化
图14  辐照致晶界偏析示意图
图15  晶界和位错环处元素偏析含量及位错环处元素偏析量与晶界处偏析量比值
图16  辐照硬化值ΔH随位错环数量密度和直径乘积的平方根(Nd)0.5的变化
[1] Stephenson K J, Was G S.Crack initiation behavior of neutron irradiated model and commercial stainless steels in high temperature water[J]. J. Nucl. Mater., 2014, 444: 331
[2] Ioka I, Ishijima Y, Usami K, et al.Radiation hardening and IASCC susceptibility of extra high purity austenitic stainless steel[J]. J. Nucl. Mater., 2011, 417: 887
[3] Fukuya K, Nakano M, Fujii K, et al.IASCC susceptibility and slow tensile properties of highly-irradiated 316 stainless steels[J]. J. Nucl. Sci. Technol., 2004, 41: 673
[4] Ge?rard R, Somville F. Situation of the baffle-former bolts in Belgian units [A]. Proceeding 17th International Conference on Nuclear Engineering[C]. Brussels, Belgium: American Society of Mechanical Engineers, 2009: 521
[5] Andersen P L, Ford F P, Murphy S M, et al.State of knowledge of radiation effects on environmental cracking in light water reactor core materials [A]. Proceeding 4th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Houston: National Association of Corrosion Engineers, 1989: 83
[6] Nishioka H, Fukuya K, Fujii K, et al.IASCC initiation in highly irradiated stainless steels under uniaxial constant load conditions[J]. J. Nucl. Sci. Technol., 2008, 45: 1072
[7] Zhou R S, West E A, Jiao Z J, et al.Irradiation-assisted stress corrosion cracking of austenitic alloys in supercritical water[J]. J. Nucl. Mater., 2009, 395: 11
[8] Was G S, Bruemmer S M.Effects of irradiation on intergranular stress corrosion cracking[J]. J. Nucl. Mater., 1994, 216: 326
[9] Stephenson K J, Was G S.Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons[J]. J. Nucl. Mater., 2015, 456: 85
[10] Jiao Z J, Was G S, Miura T, et al.Aspects of ion irradiations to study localized deformation in austenitic stainless steels[J]. J. Nucl. Mater., 2014, 452: 328
[11] Jiao Z, Was G S.Impact of localized deformation on IASCC in austenitic stainless steels[J]. J. Nucl. Mater., 2011, 408: 246
[12] Jiao Z J, Was G S.Oxidation of a proton-irradiated 316 stainless steel in simulated BWR NWC environment [A]. Proceeding 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Chichster: John Wiley & Sons, 2011: 1329
[13] Gan J, Was G S.Microstructure evolution in austenitic Fe-Cr-Ni alloys irradiated with rotons: Comparison with neutron-irradiated microstructures[J]. J. Nucl. Mater., 2001, 297: 161
[14] Was G S.Recent developments in understanding irradiation assisted stress corrosion cracking [A]. Proceeding 11th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. La Grange Park, IL: American Nuclear Society, 2003: 965
[15] Bruemmer S M, Simonen E P, Scott P M, et al.Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals[J]. J. Nucl. Mater., 1999, 274: 299
[16] Edwards D J, Simonen E P, Bruemmer S M.Evolution of fine-scale defects in stainless steels neutron-irradiated at 275 ℃[J]. J. Nucl. Mater., 2003, 317: 13
[17] Singh B N, Foreman A J E, Trinkaus H. Radiation hardening revisited: Role of intracascade clustering[J]. J. Nucl. Mater., 1997, 249: 103
[18] Huang H F, Li J J, Liu R D, et al.Temperature effect of Xe ion irradiation to 316 austenitic stainless steel[J]. Acta Metall. Sin., 2014, 50: 1189(黄鹤飞, 李健健, 刘仁多等. 316奥氏体不锈钢离子辐照损伤中的温度效应研究[J]. 金属学报, 2014, 50: 1189)
[19] Jiao Z, Was G S.The role of irradiated microstructure in the localized deformation of austenitic stainless steels[J]. J. Nucl. Mater., 2010, 407: 34
[20] Gupta G, Jiao Z, Ham A N, et al.Microstructural evolution of proton irradiated T91[J]. J. Nucl. Mater., 2006, 351: 162
[21] Gan J, Edwards D J, Simonen E P, et al.Microstructural evolution and hardening in 300-series stainless steels: Comparison between neutron and proton irradiations [A]. Proceeding 10th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Houston: NACE International Publications, 2002 (in CD-ROM)
[22] Jiao Z, Was G S.Novel features of radiation-induced segregation and radiation-induced precipitation in austenitic stainless steels[J]. Acta Mater., 2011, 59: 1220
[23] Miller M K.Atom Probe Tomography: Analysis at the Atomic Level[M]. New York: Springer, 2012: 173
[24] Liu W Q, Liu Q D, Gu J F.Development and application of atom probe tomography[J]. Acta Metall. Sin., 2013, 49: 1025(刘文庆, 刘庆冬, 顾剑锋. 原子探针层析技术(APT)最新进展及应用[J]. 金属学报, 2013, 49: 1025)
[25] Sencer B H, Was G S, Sagisaka M, et al.Proton irradiation emulation of PWR neutron damage microstructures in solution annealed 304 and cold-worked 316 stainless steels[J]. J. Nucl. Mater., 2003, 323: 18
[26] Wiedersich H, Okamoto P R, Lam N Q.A theory of radiation-induced segregation in concentrated alloys[J]. J. Nucl. Mater., 1979, 83: 98
[27] Perks J M, Marwick A D, English C A.A Computer Code to Calculate Radiation-induced Segregation in Concentrated Ternary Alloys[M]. Harwell: AEA Technology, Atomic Energy Research Establishment, 1986: 48
[28] Allen T R, Was G S.Modeling radiation-induced segregation in austenitic Fe-Cr-Ni alloys[J]. Acta Mater., 1998, 46: 3679
[29] Rothman S J, Nowicki L J, Murch G E.Self-diffusion in austenitic Fe-Cr-Ni alloys[J]. J. Phys., 1980, 10F: 383
[30] Allen T R, Was G S, Kenik E A.The effect of alloy composition on radiation-induced segregation in Fe-Cr-Ni alloys[J]. J. Nucl. Mater., 1997, 244: 278
[31] Siegel R W. Vacancy concentrations in metals [J]. J. Nucl. Mater., 1978, 69-70: 117
[32] Kiritani M, Takata H. Dynamic studies of defect mobility using high voltage electron microscopy [J]. J. Nucl. Mater., 1978, 69-70: 277
[33] Allen T R, Busby J T, Was G S, et al.On the mechanism of radiation-induced segregation in austenitic Fe-Cr-Ni alloys[J]. J. Nucl. Mater., 1998, 255: 44
[34] Lee E H, Maziasz P J, Rowcliffe A F, et al.Phase Stability during Irradiation[M]. Warrendale: TMS-AIME, 1981: 141
[35] Was G S, Busby J T.Use of proton irradiation to determine IASCC mechanisms in light water reactors: Solute addition alloys [R]. Final Report, EPRI Project EP-P3038/C1434. Palo Alto, CA: Electric Power Research Institute, 2003 (in CD-ROM)
[36] Wan Q M, Shu G G, Wang R S, et al.Study on the microstructure evolution of A508-3 steel under proton irradiarion[J]. Acta Metall. Sin., 2012, 48: 929(万强茂, 束国刚, 王荣山等. A508-3钢质子辐照条件下微结构演变研究[J]. 金属学报, 2012, 48: 929)
[37] Li Z C, Chen L.Irradiation embrittlement mechanisms and relevant influence factors of nuclear reactor pressure vessel steels[J]. Acta Metall. Sin., 2014, 50: 1285(李正操, 陈良. 核能系统压力容器辐照脆化机制及其影响因素[J]. 金属学报, 2014, 50: 1285)
[38] Li Z C, Abe H, Sekimura N.Detection of point defects upon ion irradiation by means of precipitate coherency[J]. J. Nucl. Mater., 2007, 362: 87
[39] Higgy H R, Hammad F H.Effect of fast-neutron irradiation on mechanical properties of stainless steels: AISI types 304, 316 and 347[J]. J. Nucl. Mater., 1975, 55: 177
[1] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[2] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[3] 邓平,孙晨,彭群家,韩恩厚,柯伟,焦治杰. 核用304不锈钢辐照促进应力腐蚀开裂研究[J]. 金属学报, 2019, 55(3): 349-361.
[4] 黄鹤飞, 李健健, 刘仁多, 陈怀灿, 闫隆. 316奥氏体不锈钢离子辐照损伤中的温度效应研究[J]. 金属学报, 2014, 50(10): 1189-1194.
[5] 万强茂 束国刚 王荣山 丁辉 彭啸 张琪. A508-3钢质子辐照条件下微结构演变研究[J]. 金属学报, 2012, 48(8): 929-934.
[6] 刘小明; 由小川; 柳占立; 庄茁 . 纳米尺度摩擦过程的分子动力学模拟[J]. 金属学报, 2008, 44(9): 1025-1030 .
[7] 刘毅;郦定强;林栋梁;陈世朴;赵晓宁;洪建明. 高温变形FeAl金属间化合物中的位错特征[J]. 金属学报, 1995, 31(1): 24-28.
[8] 万发荣;肖纪美;袁逸. 利用电子束辐照方法测定空位迁移能[J]. 金属学报, 1990, 26(2): 74-78.