Please wait a minute...
金属学报  2011, Vol. 47 Issue (7): 946-953    DOI: 10.3724/SP.J.1037.2011.00157
  论文 本期目录 | 过刊浏览 |
25Cr2Ni4MoV钢锻造过程孔洞缺陷愈合规律研究
李世键, 孙明月, 刘宏伟, 李殿中
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
STUDY ON VOID HEALING BEHAVIOR DURING FORGING PROCESS FOR 25Cr2Ni4MoV STEEL
LI Shijian, SUN Mingyue, LIU Hongwei, LI Dianzhong
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

李世键 孙明月 刘宏伟 李殿中. 25Cr2Ni4MoV钢锻造过程孔洞缺陷愈合规律研究[J]. 金属学报, 2011, 47(7): 946-953.
. STUDY ON VOID HEALING BEHAVIOR DURING FORGING PROCESS FOR 25Cr2Ni4MoV STEEL[J]. Acta Metall Sin, 2011, 47(7): 946-953.

全文: PDF(1531 KB)  
摘要: 实测了核电转子用25Cr2Ni4MoV钢的高温应力-应变曲线和热物性参数, 基于 ABAQUS软件建立了锻造过程孔洞闭合的有限元模型, 模拟了不同温度和变形量下的孔洞闭合行为. 研究发现, 典型的孔洞闭合过程分为3个阶段, 即闭合速率减小-增加-再次减小. 模拟结果表明, 900-1200℃时孔洞几乎在同一压下率(约25%)下闭合, 即孔洞闭合对变形温度不敏感. 在模拟结果的基础上, 进一步设计了孔洞闭合后焊合过程的物理模拟实验, 研究了恒应变速率(0.01 s-1)下压下率(25%-45%)和变形温度(900-1200℃)对闭合孔洞焊合过程的影响. 焊合界面的拉伸实验结果表明, 较高的温度和闭合后持续的塑性变形能极大地促进闭合界面的焊合, 当变形温度大于1000℃, 压下率为35\%时, 闭合界面结合强度可达基体强度, 孔洞实现完全焊合; 当温度降至900℃时, 孔洞需45\%的压下率才能完全焊合. 最后, 基于拉伸断口的形貌, 对影响孔洞焊合的因素进行了讨论.
关键词 25Cr2Ni4MoV钢锻造孔洞愈合焊合效率模拟    
Abstract:Based on the measured stress-strain curves and thermo-physical data of 25Cr2Ni4MoV steel, a FEM model of void closure in heavy forging process was established through ABAQUS software. The void closure behaviors under different hot plasticity conditions have been investigated. The FEM results showed three distinct stages during the void closure. The voids with the same position in a cylindrical specimen close up at a similar height reduction ratio (ΔH/H0) around 25\% at different temperatures, which indicates that the void closure is not sensitive to the deformation temperature. On basis of the FEM results, a physical-simulated experiment for void bonding process has been performed through compression tests on a hollow cylindrical specimens, with deformation temperatures ranging from 900 ℃ to 1200 ℃, ΔH/H0 from 25\% to 45\% and a constant strain rate 0.01 s-1. The experimental results have shown that the ΔH/H0 for the void completely bonded at 1200, 1100 and 1000℃ are all about 35%, but increases to 45\% when the deformation temperature decreased to 900℃, which confirms that void bonding is a diffusion controlled process. Through the experimental results, it can be further demonstrated the high temperature combined with severe deformation can enhance the ability of atoms transition and decrease the micro-gap between contacted surfaces. Finally, the influencing factors on the bonding efficiency were investigated through SEM observation on the fractured surface of the tensile specimen with internal closed void.
Key wordssteel 25Cr2Ni4MoV    forging    void healing    bonding efficiency    simulation
收稿日期: 2011-03-23     
作者简介: 李世键, 男, 1982年生, 博士生
[1] National Development and Reform Commission. Nuclear Power Medium– and Long–term Development Program 2005—2020, May, 2007

(国家发展和改革委员会. 核电中长期发展规划(2005-2020年). 2007年5月)

[2] Sigworth G K, Wang C M. Metall Trans, 1993; 24B: 349

[3] Lu Y. The Theory and Process of Forging. Beijing: China Machine Press, 1991: 321

(吕炎. 锻压成形理论与工艺. 北京: 机械工业出版社, 1991: 321)

[4] Kallstrom R. Scand J Metall, 1983; 12: 121

[5] Cook P M. J Iron Steel Inst Jpn, 1959; 4: 250

[6] Wang L G, Huang Y, Liu Z B. J Plast Eng, 2002; 9(2): 28

(王雷刚, 黄瑶, 刘助柏. 塑性工程学报, 2002; 9(2): 28)

[7] Park C Y, Yang D Y. J Mater Process Technol, 1996; 57: 129

[8] Wang A, Thomson P F, Hodgson P D. J Mater Process Technol, 1996; 60: 95

[9] Chen K, Yang Y T, Liu K J, Shao G J. Adv Mater Res, 2010; 11: 3079

[10] Zhang X X, Cui Z S. Appl Math Mech (Engl Ed), 2009; 30: 631

[11] Zhu M. J Beijing Inst Technol, 1990; 10(2): 58

(朱明. 北京理工大学学报, 1990; 10(2): 58)

[12] Cui Z S, Ren G S, Xu B Y, Xu C G, Liu G H. J Tsinghua Univ (Sci Technol), 2003; 43: 227

(崔振山, 任广升, 徐秉业, 徐春国, 刘桂华. 清华大学学报(自然科学版), 2003; 43: 227)

[13] Lee Y S, Kwon Y C, Kwon Y N, Lee J H, Lee S W, Kim N S. Adv Mater Res, 2007; 26: 69

[14] Yuan C L, Zhong Y X, Ma Q X. Sci China, 2002; 45E: 531

[15] Petrov A I, Razuvaeva M V. Phys Solid State, 2005; 47: 880

[16] Schleisiek K, Lechler T, Schafer L, Weimar P. J Nucl Mater, 2000; 283: 1196

[17] Huang H G, Du F S, Xu Z Q. J Iron Steel Res, 2007; 19(11): 55

(黄华贵, 杜凤山, 许志强. 钢铁研究学报, 2007; 19(11): 55)

[18] Liu L J, Cui Z S. J Plast Eng, 2010; 17(1): 1

(刘丽娟, 崔振山. 塑性工程学报, 2010; 17(1): 1)

[19] Park C Y, Yang D Y. J Mater Process Technol, 1997; 72: 32

[20] Tanaka M, Ono S, Tsuneno M, Iwadate T. Adv Technol Plast, 1987; 2: 1035

[21] Morihiko N, Ichiro T, Hirosh U. J Mater Process Technol, 2006; 177: 521

[22] Kakimoto H, Arikawa T, Takahashi Y, Tanaka T, Imaida Y. J Mater Process Technol, 2010; 210: 415
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[5] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[7] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[8] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[9] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[10] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[11] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[12] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
[13] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[14] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[15] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.