Please wait a minute...
金属学报  2011, Vol. 47 Issue (5): 559-565    DOI: 10.3724/SP.J.1037.2010.00650
  论文 本期目录 | 过刊浏览 |
动态压缩LY12铝合金微结构的XRD线形分析
樊志剑1), 宋振飞2), 肖大武2), 陈波1)
1) 中国工程物理研究院核物理与化学研究所, 绵阳 621900
2) 中国工程物理研究院流体物理研究所, 绵阳 621900
XRD LINE PROFILE ANALYSIS OF LY12 ALUMINUM ALLOY UNDER DYNAMIC COMPRESSIVE EXPERIMENT
FAN Zhijian1), SONG Zhenfei2), XIAO Dawu2), CHEN Bo1)
1) Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900
2) Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900
引用本文:

樊志剑 宋振飞 肖大武 陈波. 动态压缩LY12铝合金微结构的XRD线形分析[J]. 金属学报, 2011, 47(5): 559-565.
, , , . XRD LINE PROFILE ANALYSIS OF LY12 ALUMINUM ALLOY UNDER DYNAMIC COMPRESSIVE EXPERIMENT[J]. Acta Metall Sin, 2011, 47(5): 559-565.

全文: PDF(1002 KB)  
摘要: 用Hopkinson杆实验装置在不同温度下对LY12铝合金进行动态压缩实验. 采用XRD线形分析对压缩试样的微细观结构演化进行研究. 由XRD的积分宽度确定试样中位错为刃型位错. 衍射峰形的Fourier分析表明, 在动态加载下, 材料内部的位错密度在塑性流动的初期迅速趋于饱和, 且随着测试温度的升高, 位错密度呈递减趋势, 同时亚结构的尺寸不断增加. 衍射峰形分析结果显示在280-300℃之间亚结构尺寸迅速增长, 与LY12铝合金在280℃附近发生第二相粒子的溶解对应.
关键词 LY12铝合金 线形分析 位错    
Abstract:The plastic deformation of metals under dynamic loading is related to the evolution of dislocation structure and density which is thermal activation-dependent. The dynamic compressive experiment on LY12 aluminum alloy has been performed by Hopkinson bar at different temperatures. X-ray diffraction line profile analysis is adopted for the tested specimens to investigate the micro-and/or meso-scale structure evolution. The edge character of dislocations in the specimens was determined by analyzing the integral breadths of X-ray diffraction lines. The Fourier analysis of diffraction lines indicates that under dynamic loading, the dislocation density approaches to saturation rapidly at the initial stage of plastic deformation, dislocations are homogeneously distributed in the specimens. It also demonstrates that the dislocation density decreases with increasing testing temperature. Meanwhile the size of substructures has a tendency of broadening with temperature, especially in the range from 280℃ to 300℃ which corresponds to the temperature of dissolution of precipitated phase in the aluminum matrix.
Key wordsLY12 aluminum alloy    line profile analysis    dislocation
收稿日期: 2010-12-03     
ZTFLH: 

O799

 
基金资助:

中国工程物理研究院科学技术基金项目2010A0103002和中国工程物理研究院核物理与化学研究所创新基金项目2009CX01资助

作者简介: 樊志剑, 男, 1980年生, 助理研究员, 硕士
[1] Wilkens M. Krist Technol, 1976; 11: 1159

[2] Langford J I, Lou¨er D, Scardi P. J Appl Cryst, 2000; 33: 964

[3] Scardi P, Leoni M. Acta Cryst, 2001; 57A: 604

[4] Ung´ar T, Gubicza J, Rib´arik G, Borb´ely A. J Appl Cryst, 2001; 34: 298

[5] Williamson G K, Hall W H. Acta Metall, 1953; 1: 22

[6] Klug H P, Alexander L E. X–Ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: John Wiley, 1974: 634

[7] Balzar D, Popovi´c S. J Appl Cryst, 1996; 29: 16

[8] Warren B E, Averbach B L. J Appl Phys, 1950; 21: 595

[9] Warren B E. X–Ray Diffraction. Reading: Addison–Wesley, 1969: 264

[10] Stephens P W. J Appl Cryst, 1999; 32: 281

[11] Popa N C. J Appl Cryst, 1998; 31: 176

[12] Krivoglaz M A, Ryaboshapka K P. Phys Met Metallogr, 1963; 15: 18

[13] Krivoglaz M A, Martynenko O V, Ryaboshapka K P. Phys Met Metallogr, 1983; 55: 318

[14] Krivoglaz M A. X–Ray and Neutron Diffraction in Nonideal Crystals. New York: Springer–Verlag, 1996: 357

[15] Wilkens M. Phys Status Solidi, 1970; 2A: 359

[16] Wilkens M. In: Simmons J A, De Wit R, Bullough R, eds., Fundamental Aspects of Dislocation Theory National Bureau of Standards Special Publication 317(II).Washington DC: National Bureau of Standards, 1970: 1195

[17] Wilkens M. Phys Status Solidi, 1987; 104A: K1

[18] Klimanek P, Kuzel R. J Appl Cryst, 1988; 21: 59

[19] Kuzel R, Klimanek P. J Appl Cryst, 1988; 21: 363

[20] Ung´ar T, Tichy G. Phys Status Solidi, 1999; 171A: 425

[21] Gubicza J, Kassem M, Rib´arik G, Ung´ar T. Mater Sci Eng, 2004; A372: 115

[22] F´atay D, Bastarash E, Nyilas K, Dobatkin S, Gubicza J, Ung´ar T. Z Metall, 2003; 94: 1

[23] Ung´ar T, Borb´ely A. Appl Phys Lett, 1996; 69: 3173

[24] De Keijser T H, Langford J I, Mittemeijer E J, Vogels A B P. J Appl Cryst, 1982; 15: 308

[25] Thompson P, Cox D E, Hastings J B. J Appl Cryst, 1987; 20: 79

[26] Dieter G E. Mechanical Metallurgy. New York: McGraw–Hill, 1988: 58

[27] Ung´ar T. Mater Sci Eng, 2001; A309–310: 14

[28] Ung´ar T, Tichy G, Gubicza J, Hellming R J. Powder Diffr, 2005; 20: 366

[29] Ung´ar T, Gubicza J, Han´ak P, Alexandrov I. Mater Sci Eng, 2001; A319–321: 274

[30] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 5: 103

[31] Estrin Y, Molinari, Toth L S, Brechet Y. Acta Mater, 1998; 46: 5509

[32] Arzt E, Ashby M F, Verrall R A. Acta Metall, 1983; 31: 1977

[33] Brammer J A, Percival C M. Exp Mech, 1970; 10(6): 245
[1] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[2] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[4] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[5] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[6] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[8] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[9] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[10] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[12] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[13] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[14] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[15] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.