Please wait a minute...
金属学报  2010, Vol. 46 Issue (12): 1473-1480    DOI: 10.3724/SP.J.1037.2010.00216
  论文 本期目录 | 过刊浏览 |
相场方法研究Al-Ag合金γ相周围溶质析出过程
高英俊1, 2, 3,罗志荣1, 2, 张少义1,黄创高1
1. 广西大学物理科学与工程技术学院, 南宁 530004
2. 广西大学工程防灾与结构安全重点实验室, 南宁 530004
3. 中国科学院国际材料物理中心, 沈阳 110016
PHASE–FIELD SIMULATION OF SOLUTE PRECIPITATIONS AROUND THE  γ PHASE IN Al–Ag ALLOY
GAO Yingjun 1,2,3, LUO Zhirong 1,2, ZHANG Shaoyi 1, HUANG Chuanggao 1
1. College of Physics Science and Engineering, Guangxi University, Nanning 530004
2. Key Laboratory of Disaster Prevention and Structural Safety, Guangxi University, Nanning 530004
3. International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016
引用本文:

高英俊 罗志荣 张少义 黄创高. 相场方法研究Al-Ag合金γ相周围溶质析出过程[J]. 金属学报, 2010, 46(12): 1473-1480.
. PHASE–FIELD SIMULATION OF SOLUTE PRECIPITATIONS AROUND THE  γ PHASE IN Al–Ag ALLOY[J]. Acta Metall Sin, 2010, 46(12): 1473-1480.

全文: PDF(4609 KB)  
摘要: 针对Al-Ag合金溶质的Spinodal亚稳互溶隙曲线的特点, 考虑溶质场与析出相的相互作用,通过构造时效温度和溶质浓度相关联的局域相互作用自由能密度函数,  建立了低Ag溶质的Al-Ag合金析出过程的相场模型. 模拟了Ag溶质浓度分别为4.2%和22%的体系中溶质场的Spinodal分解和析出Guinier-Preston 区 (GPZ), 以及在析出相附近形成一种无沉淀区(PFZ)的演化过程. 模拟结果表明, 在析出相周围形成了 椭圆形的PFZ, 其宽度大约是棒宽度的2倍,而在远离PFZ的区域出现了由于Spinodal分解而形成的Ag溶质分布图案.经过足够长的时效时间, 溶质场析出GPZ. 当Ag溶质浓度较高时, 浓度场会在PFZ周围形成多条液滴状的平行流线环绕着的析出相. 模拟结果与实验观察结果很好地吻合.
关键词 Al-Ag合金 Spinodal分解 相场模拟 析出相    
Abstract:Interactions between different precipitation products during phase decomposition for different alloys have been observed. Spinodal decomposition and intragranular precipitation are the two well–know mechanisms for explaining phase decomposition, both of which interaction mechanisms have been investigated experimentally in recently. A local free energy density function depending on aging temperature and composition has been proposed to describe the interaction between the Ag solute field and γ precipitates in phase–field simulation of spinodal decomposition in Al–Ag alloy. The evolution of spinodal decomposition in Al–Ag alloy with 4.2%Ag and 22%Ag has been simulated by the phase–field method using this function to represent numerically the precipitated Guinier–Preston zones (GPZ) around a γ phase. The simulated results show that PFZ around a precipitated phase is an elliptical and its width is about two times the width of γ phase. In the region far from PFZ, a pattern of Ag solute field appears due to spinodal decomposition. When Ag–depleted zones are relatively far apart with each other, spinodal decomposition is strongly affected by them. The formation of PFZ resulting from spinodal decomposition has been initiated in the central region of the supersaturated α matrix before the modulation effect of Ag solute field at edge reachs here. It is found that two or three Ag–rich bands appear around the PFZ. During aging, Ag diffuses from not only the α matrix but also the edge of Ag–depleted zones, where an accumulation of Ag occurs. After long time aging, many droplet–like Ag solute bands are formed near PFZ around γ phase. These simulated results are in beter agreement with the experimental results.
Key wordsAl–Ag alloy    spinodal decomposition    phase–field simlation    precipitation
收稿日期: 2010-05-05     
ZTFLH: 

TG111.5

 
基金资助:

国家自然科学基金项目50661001和50061001, 广西自然科学基金项目0991026, 0832029和0639004资助

作者简介: 高英俊, 男, 1962年生, 教授, 博士
参考文献 [1] L. F. Mondolfo. Structure and Propertys of Aluminum Alloys[M]. London: Butterworths Press, 1976, 200-400. [2] Aiken R M and Plichta M R, Acta Metall. Meter., 1990; 38: 77 [3] Rajab E K and Doherty R D, Acta Metall., 1989; 37: 2709 [4] Sagoe K K and Brown L C, Acta Metall., 1986; 34: 1563 [5] Busch B Gartner F, Borcher C, Haasen P, and Bormenn R. Acta Metall. Meter., 1995; 43: 3467 [6] Zhao J C and Notis M R, Acta Meter., 1998; 46: 4203 [7] Ditchek B and Schwartz L H, Mater Sci Eng , 1980; 28: 807 [8] Kralochril P, Mandula M, Menel J, Pesicka J, and Smola B. Physica Status Solidi, 1987; 104A: 579 [9] A.MALIK. “Microstructure of GPZ in Al-Ag Alloy” , Acta Mater, 1996, 44: 4845-4852. [10] F.Erni., “High-resolution Z-contrast STEM of GPZ in Al-3at.%Ag alloy”, Mater. Chem. Phys .2003, 81:227-221 [11] D.A.Porter, k.E.Easterling,”Phase Transformations in Metals and Alloys”. second Edition, Chapman & Hall London.UK, Published in 1996, [12] GAOYingjun,HAN Yongjian and ZHAO Miao. The Chinese Journal of Nonferrous Metals, 2004; 14: 730 (高英俊,韩永剑,赵妙. 中国有色金属学报,2004; 14: 730) [13] K.T.Moore,J.M.House. “Chcuaetenjatim of plate-Shaped precipitates in an Al-4.2at.%Ag alloy”, Acta Mater , 2000,48:4083-4098. [14] K.T.Moore,J.M.House. “On the interaction between Ag-depleted Zones surrounding plates and spinodal decomposition in an Al-22at.%Ag alloy”. Acta Mater , 2002,50:943-956. [15] Chen L Q, Yang W, Computer simulation of the domain dynamics of a quenched system with large number of nonconserved order parameters. Phys Rev B, 1994, 50:15752-15756. [16] V.Vaithyana, L.Q.Chen.. Multiseale modeling of precipitate microstructure evolution in Al-Cu alloy. Phys.Rev.Lett.2002, 88: 125503-1 [17] Fan D N and Chen L Q, Acta Mater., 1997; 45(2): 611-622. [18] Cahn J W, Hilliard J E. Free energy of a nonuniform system .In interfacial free energy. J Chem. Phys.,1958, 28:258-260. [19] L.-Q.Chen, D.Fan. Computer simulation model for coupled grain growth to Al2O3-ZrO2 two-phase systems. J Am Ceram Soc. 1996, 79 (5):1163-1168 [20] T.Takaki., T. Hirouchi, Phase Field model to simulate microstructure Evolution during Dynamic Recrystallization. Mater. Transactions, 2008, 49: 2559 [21] Y.L.Li and L-Q Chen. Temperature-strain phase diagram for BaTiO3 thin films. Appl.Phys.Lett.2006, 88(7): 072905 [22] T.Takaki.. Phase-field study of interface energy effect on quantum dot morphology. J. Crystal Growth.2008, 310: 2248-2253 [23] Y.U.Wang. Computer modeling and simulation of solid-state sintering: A phase field approach. Acta Mater .2006, 54: 953-961 [24] Wei Li and Lian Gao. Computing and sintering behavior of nano ZrO2 powders. Scripta Mater , 2001, 44: 2269-2272 [25] J.E.Guyer, W.J.Boittinger.. Phase field modeling of electrochemistry:. Phys. Rev. E. 2004 , 69:021603 [26] H.Ramanarayan. T.AAbinandanan,“Grain boundary effect on spinodal decomposition II .discontinuous microstructures”. Acta Mater 2004,52:921-930 [27] GAO Yingjun, ZHAO Miao, HUANG Chuanggao, LAN Zhiqiang. The Microscopic Mechanism Interpret on a Precipitate-free Zones of γ Phase in Al-Ag Alloy. Precious Metals, 2005,26(1):1-5 (高英俊, 赵妙, 黄创高, 蓝志强. Al-Ag合金 相周围无沉淀带形成的机理研究. 贵金属, 2005,26(1):1-5) [28] GAO Yingjun, ZHAO Miao, HUANG Chuanggao, LAN Zhiqiang. Valence Electron Structure of GP Zone and Interface Energy in Al-Ag Alloy. Precious Metals,2005,26(3):21-24 (高英俊, 赵妙, 黄创高, 蓝志强. Al-Ag合金GP区的价电子结构与界面能. 贵金属, 2005,26(3):21-24) [29] Danan Fan, Long-Qing Chen. Computer simulation of grain growth and ostwald ripening in Alumina-Zirconia two-phase composites. J Am Ceram Soc, 1997, 80(7):1773-1780 [30] GAO Yingjun, ZHANG Hailin, JIN Xing, HUANG Chuanggao, and LUO Zhirong. Acta Metallurgica Sinica, 2009; 45: 1190 (高英俊,张海林,金星,黄创高,罗志荣. 金属学报,2009; 45: 1190) [31] Moelans N, Blanpain B, Wollants P. Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles [J].Acta Mater , 2006, 54:1175-1184 [32] YOU Yuan, YAN Mufu, CHEN Yiqing. Acta Metallurgica Sinica, 2008, 44(10): 1171-1174 (由园,闫牧夫,陈义强, 低体积分数,金属学报,2008, 44(10): 1171-1174) [33] Oono Y , Pori S. Computationally efficient modeling of ordering of quenched phases[J]. Phys Rev Lett, 1987, 58(8): 836-839
[1] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[3] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[4] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[5] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[6] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[7] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[8] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[9] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[10] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[11] 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展:微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149.
[12] 郭倩颖, 李彦默, 陈斌, 丁然, 余黎明, 刘永长. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57(1): 82-94.
[13] 刘峰, 王天乐. 基于热力学和动力学协同的析出相模拟[J]. 金属学报, 2021, 57(1): 55-70.
[14] 韩宝帅, 魏立军, 徐严谨, 马晓光, 刘雅菲, 侯红亮. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报, 2020, 56(7): 1007-1014.
[15] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.