Please wait a minute...
金属学报  2010, Vol. 46 Issue (9): 1075-1080    DOI: 10.3724/SP.J.1037.2010.00185
  论文 本期目录 | 过刊浏览 |
定向凝固镍基高温合金DZ125平界面生长的微观组织演化
闵志先, 沈军, 王灵水, 冯周荣, 刘林, 傅恒志
西北工业大学凝固技术国家重点实验室, 西安 710072
MICROSTRUCTURAL EVOLUTION OF DIRECTIONALLY SOLIDIFIED Ni-BASED SUPERALLOY DZ125 UNDER PLANAR GROWTH
MIN Zhixian, SHEN Jun, WANG Lingshui, FENG Zhourong, LIU Lin, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

闵志先 沈军 王灵水 冯周荣 刘林 傅恒志. 定向凝固镍基高温合金DZ125平界面生长的微观组织演化[J]. 金属学报, 2010, 46(9): 1075-1080.
, , , , , . MICROSTRUCTURAL EVOLUTION OF DIRECTIONALLY SOLIDIFIED Ni-BASED SUPERALLOY DZ125 UNDER PLANAR GROWTH[J]. Acta Metall Sin, 2010, 46(9): 1075-1080.

全文: PDF(709 KB)  
摘要: 

采用液态金属冷却(LMC)定向凝固技术, 对镍基高温合金DZ125在凝固速率为1.5 μm/s的条件下其平界面生长的微观组织演化规律进行了研究. 结果表明: 凝固组织演化经历3个不同的阶段, 当凝固分数fs<0.26时, 为单相γ组织, 基体中零星分布着细小的颗粒状的未熔HfC; 当0.26<fs<0.86时, 为γ/MC共生组织, MC为纤维状或者板片状; 当fs>0.86时, 为 γ/γ´共晶组织和分布于其中的粗大块状$M$C. EPMA结果表明: Al, Ti, Ta和Mo含量随fs的增大而增大; 而W, Cr和Co含量随fs的增大而减小. 分析指出, 凝固组织转变是由于溶质再分配产生的宏观溶质分布不均匀造成的.

关键词 镍基高温合金定向凝固微观组织溶质分布    
Abstract

By using liquid metal cooling method, the Ni-based superalloy DZ125 was directionally solidified under planar interface growth condition of drawing rate of 1.5 μm/s. The microstructures at different solidified fractions were examined by OM and SEM. The results showed that the solid/liquid interface is planar and the microstructure evolution undergoes three stages: the γ phase was formed as solidified fraction (fs) was not more than 0.26, and the fine HfC phase sparsely distributed in γ matrix; the coupled γ/MC growth appeared as fs ranged from 0.26 to 0.86, and the morphology of MC was fibrous or plate-like shapes; the γ/γ´ eutectic was obtained as fs was more than and equaled 0.86 0.86, in which the octahedral MC was precipitated simultaneously. EPMA was used to determine the solute distribution along the longitudinal direction of the sample. The contents of Al, Ti, Ta and Mo increased with fs increasing, while the contents of W, Cr and Co decreased. The analysis showed that the microstructure transformation is attributed to macro-scale non-uniform solute distribution which resulted from solute redistribution during directional solidification.

Key wordsNi-based superalloy    directional solidification    microstructure    solute distribution
收稿日期: 2010-04-21     
基金资助:

国家自然科学基金项目50827102, 国家重点基础研究发展计划项目2010CB631202和凝固技术国家重点实验室自主课题28-TP-2009资助

作者简介: 闵志先, 男, 1984年生, 博士生

[1] Fu H Z. J Aeronaut Mater, 1998; 18(4): 52
(傅恒志. 航空材料学报, 1998; 18(4): 52)
[2] McLean M. Directionally Solidified Materials for High Temperature Service. UK: The Metals Society, 1983: 11
[3] Liu L, Huang T W, Zhang J, Fu H Z. Mater Lett, 2007; 61: 227
[4] Versnyder F I, Shank M E. Mater Sci Eng, 1970; A6: 213
[5] Tien J K, Gamble R P. Mater Sci Eng, 1971; A8: 152
[6] Bae J S, Lee J H, Kim S S, Jo C Y. Scr Mater, 2001; 45: 50
[7] Sellamuthu R, Giamei A F. Metall Mater Trans, 1986; 16A: 419
[8] Seo S M, Lee J H, Yoo Y S, Jo C Y, Miyahara H, Ogi K. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A. eds, Superalloys 2008, Warrendale, PA: TMS, 2008: 2773
[9] Stefanescu D M. Science and Engineering of Casting Solidification. New York: Kluwer Academic/Plenum Publishers, 2002: 33
[10] Trivedi R, Minyahara H, Mazumder P, Simsek E, Tewari S N. J Cryst Growth, 2001; 222: 365
[11] Tiller W A. Trans TMS–AIME, 1959; 215: 555
[12] Liu L, Sommer F, Fu H Z. Scr Metall Mater, 1994; 30: 584
[13] ZhangWG. PhD Thesis, Northwestern Polytechnical University, Xi’an, 2009
(张卫国. 西北工业大学博士论文, 西安, 2009)
[14] Li R J. Ceramic–Metal Composites. Beijing: Metallurgical Industry Press, 2004: 39
(李荣久. 陶瓷-金属复合材料, 北京: 冶金工业出版社, 2004: 39)
[15] Bhambri A K, Kattamis T Z, Morral J E. Metall Mater Trans, 1986; 6B: 523
[16] Chen J, Lee J H, Jo C Y, Choe S J, Lee Y T. Mater Sci Eng, 1998; A247: 113

[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[7] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[12] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[13] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[14] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.