Please wait a minute...
金属学报  2010, Vol. 46 Issue (9): 1066-1074    DOI: 10.3724/SP.J.1037.2010.00188
  论文 本期目录 | 过刊浏览 |
Mn和Si对Fe-0.6C钢中珠光体-奥氏体相变的影响
李昭东1), 宫本吾郎2), 杨志刚1), 张玉朵1), 张弛1), 古原忠2)
1) 清华大学材料科学与工程系先进材料教育部重点实验室, 北京 100084
2) 东北大学金属材料研究所, 仙台 980-8577, 日本
EFFECTS OF Mn AND Si ADDITIONS ON PEARLITE-AUSTENITE PHASE TRANSFORMATION IN Fe-0.6C STEEL
LI Zhaodong1), MIYAMOTO Goro2), YANG Zhigang1), ZHANG Yuduo1), ZHANG Chi1), FURUHARA Tadashi2)
1) Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084
2) Institute for Materials Research, Tohoku University, Sendai 980--8577, Japan
引用本文:

李昭东 宫本吾郎 杨志刚 张玉朵 张弛 古原忠. Mn和Si对Fe-0.6C钢中珠光体-奥氏体相变的影响[J]. 金属学报, 2010, 46(9): 1066-1074.
, , , , , . EFFECTS OF Mn AND Si ADDITIONS ON PEARLITE-AUSTENITE PHASE TRANSFORMATION IN Fe-0.6C STEEL[J]. Acta Metall Sin, 2010, 46(9): 1066-1074.

全文: PDF(941 KB)  
摘要: 

通过盐浴热处理实验, 研究了Fe-0.6C二元合金和Fe-0.6C-1M/2M三元合金(质量分数, %, M为Mn和Si)在1073 K下的组织演化和相变动力学. 结果表明, Fe-0.6C合金在1073 K保温约5.5 s完成珠光体→奥氏体转变, 珠光体中渗碳体先于铁素体转变成奥氏体; 添加1%Si减缓了奥氏体化速率, 但未改变渗碳体先消失的特征; 添加1%-2%Mn略微缩短了奥氏体转变完成时间, 但珠光体中渗碳体和铁素体几乎同时完成奥氏体转变. 在C扩散控制长大的假设下, 奥氏体在单个珠光体片层间的一维长大模拟结果表明, 通过改变界面处奥氏体的C浓度, Mn提高奥氏体生长速率而Si减缓奥氏体生长速率, 与奥氏体化动力学实验结果一致. 1073 K下Fe-C-Mn/Si三元合金的珠光体-奥氏体相变由C扩散控制.

关键词 Fe-0.6C钢Mn(Si)添加奥氏体化相变动力学 分配    
Abstract

The reverse transformation to austenite is an important part in the heat treatment process of steels. The final microstructures obtained by quenching, normalization or intercritical annealing (e.g. for dual phase steels) are strongly dependent upon the reverse transformation kinetics and austenitic structure. Therefore, it is of considerable technical interest to study and control the kinetics of this transformation. In order to clarify effects of substitutional alloying elements on the kinetics of reverse transformation from pearlite, an Fe-0.6C binary alloy and Fe-0.6C-1 or 2M (M=Mn, Si) ternary alloys were used in the present study (hereafter denoted as 0.6C, 1Mn, 2Mn and 1Si alloys, respectively). The initial pearlite structure of each alloy has nearly the same interlamellar spacing of 0.17 μm. Thin sheets of 0.5 mm×5 mm×10 mm in size cut from the pearlitic specimen were firstly preheated in a salt bath at 923 K for 15 s, and then rapidly moved into another salt bath at 1073 K\linebreak for reverse transformation for various periods, followed by water quenching. The variation of Vickers hardness and microstructure evolution with holding time at 1073 K were examined. Ferrite region without cementite remains inside or neighboring to austenite newly formed during reverse transformation in the 0.6C and 1Si pearlitic specimens. It is indicated that continuous dissolution of cementite in ferrite and continuous diffusion of C atoms through ferrite into the growth front of austenite occur. However, pearlitic ferrite and cementite almost simultaneously disappeared in the 1Mn and 2Mn specimens. Reverse transformation from pearlite in the 0.6C pearlitic specimen at 1073 K is finished after holding for about 5.5 s. The reversion kinetics is retarded by the addition of Si. On the other hand, the reversion kinetics is slightly accelerated by the addition of Mn. The difference of acceleration between the 1Mn and 2Mn pearlitic specimens is small. From the viewpoint of 1D austenite growth in a pearlite lamella, austenite can grow without long range diffusion of Mn and Si in the Mn- and Si-added pearlitic specimens, respectively. It is supposed that austenite growth is controlled by carbon diffusion in those specimens. The addition of Mn or Si affects carbon diffusion by affecting carbon concentrations at the austenite/ferrite and austenite/cementite interfaces, resulting in changes in reversion kinetics.

Key wordsFe-0.6C steel    Mn(Si) addition    austenitization    phase transformation    kinetics    partition
收稿日期: 2010-04-21     
基金资助:

国家自然科学基金资助项目50871059

作者简介: 李昭东, 男, 1983年生, 博士生

[1] Roberts R A, Mehl R F. Trans ASM, 1943; 31: 613
[2] Brooks C R. Principles of the Austenitization of Steels. London: Elsevier Applied Science, 1992: 81
[3] Samuels L E. Light Microscopy of Carbon Steels. Materials Park: ASM International, 1999: 185
[4] Li Z D, Miyamoto G, Yang Z G, Furuhara T. Scr Mater, 2009; 60: 485
[5] Hillert M, Nilsson K, Torndahl L E. J Iron Steel Inst, 1971; 209: 49
[6] Akbay T, Atkinson C. J Mater Sci, 1996; 31: 2221
[7] Roosz A, Gacsi Z, Fuchs E G. Acta Metall, 1983; 31: 509
[8] Speich G R, Szirmae A. Trans TMS–AIME, 1969; 245: 1063
[9] Caballero F G, Capdevila C, Garc´?a de Andr´es C. Scr Mater, 2000; 42: 1159
[10] Karmazin L. Mater Sci Eng, 1991; A142: 71
[11] Miyamoto G, Usuki H, Li Z D, Furuhara T. Acta Mater, 2010; 58: 4492
[12] Judd R R, Paxton H W. Trans TMS–AIME, 1968; 242: 206
[13] Akbay T, Reed R C, Atkinson C. Acta Metall Mater, 1994; 42: 1469
[14] Mancini R, Budde C. Acta Mater, 1999; 47: 2907
[15] Kumar M, Sasikumar R, Nair P K. Acta Mater, 1998; 46: 6291
[16] Garc´?a de Andr´es C, Caballero F G, Capdevila C, Bhadeshia H K D H. Scr Mater, 1998; 39: 791
[17] Coates D E. Metall Trans, 1973; 4: 2313
[18] Hillert M. In: ?Agren J, Br´echet Y, Hutchinson C, Philibert J, Purdy G eds., Thermodynamics and Phase Transformations: the Selected Works of Mats Hillert, France: EDP Sciences, 2007: 9

[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[6] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[7] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[8] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[9] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[10] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[11] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[12] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[13] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[14] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[15] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.