Please wait a minute...
金属学报  2010, Vol. 46 Issue (5): 569-574    DOI: 10.3724/SP.J.1037.2009.00566
  论文 本期目录 | 过刊浏览 |
Sn-3.5Ag/Cu体系早期界面反应及凝固过冷行为
周敏波; 李勋平; 马骁; 张新平
华南理工大学材料科学与工程学院; 广州 510640
EARLY INTERFACIAL REACTION AND UNDERCOOLING SOLIDIFICATION BEHAVIOR  OF Sn-3.5Ag/Cu SYSTEM
ZHOU Minbo; LI Xunping; MA Xiao; ZHANG Xinping
School of Materials Science and Engineering; South China University of Technology; Guangzhou 510640
引用本文:

周敏波 李勋平 马骁 张新平. Sn-3.5Ag/Cu体系早期界面反应及凝固过冷行为[J]. 金属学报, 2010, 46(5): 569-574.
, , , . EARLY INTERFACIAL REACTION AND UNDERCOOLING SOLIDIFICATION BEHAVIOR  OF Sn-3.5Ag/Cu SYSTEM[J]. Acta Metall Sin, 2010, 46(5): 569-574.

全文: PDF(749 KB)  
摘要: 

利用差示扫描量热分析法结合焊点回流过程, 研究了无Pb钎料Sn-3.5Ag与Cu基底构成的Sn-3.5Ag/Cu体系模拟焊点中早期界面反应及焊点形成过程中钎料熔化和凝固特性. 结果表明, 加热过程中Cu向钎料合金侧的固态原子扩散导致界面生成低熔点Sn-Ag-Cu三元合金, 使焊点界面在低于Sn-3.5Ag钎料熔点温度近4 ℃时即开始熔化; 早期界面反应促使润湿过程提早发生并生成了一定厚度的扇贝状Cu-Sn型金属间化合物(IMC), 原体系转变为 Sn-Ag-Cu/Cu体系;转变后的焊点体系在IMC的非均匀形核作用下具有较低的过冷度.

关键词 无Pb钎料界面反应金属间化合物 过冷度    
Abstract

For electronic packaging technologies using lead-free solders, one of the major problems related to reliability for the solder interconnects is the existence of the interfacial intermetallic compound (IMC). The interfacial failures between IMC and solder alloy often lead to loss of function in interconnects and result in product failure. Therefore, considerable attention has been focused on study of formation, growth and control of IMC during solder process. In this paper, the early interfacial reaction in Sn-3.5Ag/Cu (UBM) system and the system's melting and solidification characteristics were investigated using differential scanning calorimeter incorporating with reflow process. The results show that during heating the diffusion of Cu atom into Sn-3.5Ag solder results in the formation of Sn-Ag-Cu ternary alloy at the interface before melting of Sn-3.5Ag solder and the ternary eutectic system melts at a temperature nearly 4 ℃ lower than Sn-3.5Ag solder's melting temperature. The early interfacial reaction also leads to earlier wetting of the liquid solder alloy at the interface, and consequently brings about formation of scallop-type Cu-Sn intermetallics layer with a certain thickness as well as makes the initial Sn-3.5Ag/Cu system changed into Sn-Ag-Cu/Cu system, which makes the undercooling of the solder alloy decrease obviously.

Key wordslead-free solder    interfacial reaction    intermetallics    undercooling
收稿日期: 2009-08-31     
基金资助:

新世纪优秀人才计划项目NCET-04-0824及广东省重大科技专项项目2009A080204005资助

作者简介: 周敏波, 男, 1981年生, 博士生

[1] Laurila T, Vuorinen V, Kivilahti J K. Mater Sci Eng, 2005; R49: 1
[2] Tu K N. Mater Chem Phys, 1996; 46: 217
[3] Kajihara M. Acta Mater, 2004; 52: 1193
[4] Sakama T, Kajihara M. J Alloy Compd, 2009; 475: 608
[5] Zeng K, Tu K N. Mater Sci Eng, 2002; R38: 55
[6] Gong J C, Liu C Q, Conway P P, Silberschmidt V V. Acta Mater, 2008; 56: 4291
[7] Gong J C, Liu C Q, Conway P P, Silberschmidt V V. Scr Mater, 2009; 60: 333
[8] Deng X, Piotrowski G, Williams J J, Chawla N. J Electron Mater, 2003; 32: 1403
[9] Yao P, Liu P, Liu J. Microelectron Eng, 2009; 86: 1969
[10] Lehman L P, Kinyanjui R K, Zavalij L, Zribi A, Cotts E J. In: Howell W, Noctor D, eds., Proceedings of 53rd Electronic Components and Technology Conference, New Orleans, LA: IEEE, 2003: 1215
[11] Kang S K, Choi W K, Shih D Y, Henderson D W, Gosselin T, Sarkhel A, Goldsmith C, Puttlitz K J. In: Howell W, Noctor D, eds., Proceedings of 53rd Electronic Components and Technology Conference, New Orleans, LA: IEEE, 2003: 64
[12] Kang S K, Shih D Y, Leonard D, Henderson D W, Gosselin T, Cho S I, Yu J, Choi W K. J Miner Met Mater Soc, 2004; 56: 34
[13] Kim K S, Huh S H, Suganuma K. Microelectron Relia, 2003; 43: 259
[14] KimD H, Cho M G, Seo S K, Lee HM. J Electron Mater, 2009; 38: 39
[15] Cho M G, Kim H Y, Seo S K, Lee H M. Appl Phys Lett, 2009; 95: 021905
[16] Kang S K, Cho M G, Lauro P, Shih D Y. J Mater Res, 2007; 22: 557
[17] Cho M G, Kang S K, Lee H M. J Mater Res, 2008; 23: 1147
[18] Cho M G, Kang S K, Seo S K, Shih D Y, Lee H M. J Mater Res, 2009; 24: 534
[19] Loomans M E, Fine M E. Metall Mater Trans, 2000; 31A: 1155
[20] Baker H, Okamoto H. ASM Handbook. Vol.3. Alloy Phase Diagrams: Section 2. Materials Park, Ohio: ASM International, 1992: 28
[21] Moon K W, Boettinger W J, Kattner U R, Biancaniello F S, Handwerker C A. J Electron Mater, 2000; 29: 1122
[22] Alam M O, Chan Y C, Tu K N. J Appl Phys, 2003; 94: 7904
[23] Callister W D. Materials Science and Engineering–An Introduction. 7th Ed, New York: John Wiley & Sons, 2007: 313
[24] Wang H Q, Gao F, Ma X, Qian Y Y. Scr Mater, 2006; 55: 823

[1] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[2] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[3] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[4] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[5] 许军锋, 张宝东, Peter K Galenko. 含有化合物相的共晶转变理论模型[J]. 金属学报, 2021, 57(10): 1320-1332.
[6] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[7] 张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为[J]. 金属学报, 2020, 56(10): 1386-1392.
[8] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[9] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[10] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[11] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[12] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[13] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[14] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[15] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.