Please wait a minute...
金属学报  2021, Vol. 57 Issue (10): 1320-1332    DOI: 10.11900/0412.1961.2020.00373
  研究论文 本期目录 | 过刊浏览 |
含有化合物相的共晶转变理论模型
许军锋1,2(), 张宝东1, Peter K Galenko2
1.西安工业大学 材料与化工学院 西安 710021
2.Otto Schott Institute of Materials Research, Friedrich-Schiller-Universit?t Jena, 07743, Germany
Model of Eutectic Transformation Involving Intermetallic Compound
XU Junfeng1,2(), ZHANG Baodong1, Peter K Galenko2
1.School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
2.Otto Schott Institute of Materials Research, Friedrich-Schiller-Universität Jena, 07743, Germany
引用本文:

许军锋, 张宝东, Peter K Galenko. 含有化合物相的共晶转变理论模型[J]. 金属学报, 2021, 57(10): 1320-1332.
Junfeng XU, Baodong ZHANG, Galenko Peter K. Model of Eutectic Transformation Involving Intermetallic Compound[J]. Acta Metall Sin, 2021, 57(10): 1320-1332.

全文: PDF(1463 KB)   HTML
摘要: 

在经典理论Jackson-Hunt模型的基础上,导出有化合物相参与时的共晶生长模型表达式,补充了共晶生长扩散方程求解过程,以及溶质分配系数的确定和模型使用方法,进而类比给出其他共晶生长模型在有化合物相参与时的使用步骤。模型计算发现:同样过冷度下,共晶生长速率随着化合物相浓度(CB)减小而增大,这一参数变化弥补了化合物相因溶质分配系数小而生长阻力大的不足。由此可得:有化合物相参与的共晶转变,相图两端跨度一般会变窄;共晶两相溶质分配系数较小时,相图两端跨度一般比较窄。

关键词 凝固共晶生长过冷度生长速率    
Abstract

The classical eutectic growth theory, first developed by Jackson and Hunt in 1966, is simple and easy to use. However, the derivation of the classical model does not consider the model changes when one of the eutectic phases in transformation is an intermetallic compound. Moreover, the derivation of the model does not demonstrate the mathematical method to solve the diffusion equation and determine the Fourier coefficient, and without this, it is difficult to deeply understand and master the theoretical application. Based on the classical Jackson-Hunt theory, this study derives the eutectic growth model considering the compound phases and demonstrates the process involved in the solution of the diffusion equation to determine the solute distribution coefficient. The steps for using the model are supplemented and then the application methods of other similar models in eutectic transformations involving the compound phase are provided. The calculation of the model shows that under the same undercooling, the eutectic growth rate increases with the decrease of the compound phase concentration (CB). This parameter change compensates for the insufficient growth resistance of the compound phase owing to the small solute distribution coefficient. Therefore, the span of the eutectic phase diagram with the compound phase involved in the transition is narrowed; the smaller the solute partition coefficient of the eutectic phase, narrower is the phase diagram span.

Key wordssolidification    eutectic growth    undercooling    growth velocity
收稿日期: 2020-09-18     
ZTFLH:  TG111.4  
基金资助:国家自然科学基金项目(51971166);陕西省科技新星项目(2016KJXX-87);陕西省教育厅项目(18JS050)
作者简介: 许军锋,男,1981年生,副教授,博士
图1  含有化合物相的相图示意图(a) kα≠ 0, kβ≠ 0 (b) kα = 0, kβ≠ 0
图2  凝固界面的移动坐标系和静止坐标
图3  溶质分配系数的确定方法示意图
图4  Al-Al2Cu合金相图[30]和CuZr-CuZr2合金相图[31]
ParameterUnitValueParameterUnitValue
Csα%2.5Csβ%31.9
mαK·%-16.48TEK812
mβK·%-16.70CE%17.1
CB%33.33C%17.1
ΓαK·m2.358 × 10-7αm2·s-11.5 × 10-6
ΓβK·m5.54 × 10-8Dm2·s-13 × 10-9
θα(°)70θβ(°)52
表1  Al-Al2Cu合金相关物理参数[30]
图5  实验与计算结果对比(a) ΔT-V curves of Al-Al2Cu alloy (ΔT—undercooling)(b) V-λ curves of Al-Al2Cu alloy and experimental data[30](c) interfacial concentration distribution C(x, z) of Al-Al2Cu alloy at two growth rates(d) calculation results and experiments[31] of CuZr-CuZr2 alloy
ParameterUnitValueParameterUnitValue
ΓαK·m2.2 × 10-7Csα%2.5
ΓβK·m2.2 × 10-7Csβ%31.9
mαK·%-13.02TEK1195
mβK·%-16.47αm2·s-11.5 × 10-6
θα(°)45μαm·K-1·s-10.1
θβ(°)45μβm·K-1·s-10.1
CB%66.67VDm·s-10.12
C%54CE%54.3
表2  CuZr-CuZr2合金相关物理参数[31]
图6  化合物相浓度CB对计算结果的影响(a) ΔT-V curve (b) ΔT-λ curve (c) λ-V curve (d) V-Csα(Csβ) curve
1 Zener C. Kinetics of the decomposition of austenite [J]. Trans. Am. Inst. Min. Metall. Eng., 1946, 167: 550
2 Tiller M. The role of interfacial energy during solid state phase transformations [J]. Jernkont. Ann., 1957, 141: 757
3 Tiller W. Liquid Metals and Solidification [M]. Cleveland: American Society for Metals, 1958: 276
4 Jackson K A, Hunt J D. Lamellar and rod eutectic growth [J]. Trans. Metall. Soc. AIME, 1966, 236: 1129
5 Donaghey L F, Tiller W A. On the diffusion of solute during the eutectoid and eutectic transformations, Part I [J]. Mater. Sci. Eng., 1968, A3: 231
6 Trivedi R, Magnin P, Kurz W. Theory of eutectic growth under rapid solidification conditions [J]. Acta Metall., 1987, 35: 971
7 Kurz W, Trivedi R. Eutectic growth under rapid solidification conditions [J]. Metall. Trans., 1991, 22A: 3051
8 Zheng L L, Larson Jr D L, Zhang H. Revised form of Jackson-Hunt theory: Application to directional solidification of MnBi/Bi eutectics [J]. J. Cryst. Growth, 2000, 209: 110
9 Ludwig A, Leibbrandt S. Generalised ‘Jackson-Hunt’ model for eutectic solidification at low and large Peclet numbers and any binary eutectic phase diagram [J]. Mater. Sci. Eng., 2004, A375-377: 540
10 Li J F, Zhou Y H. Eutectic growth in bulk undercooled melts [J]. Acta Mater., 2005, 53: 2351
11 Gao J R. A model for free growth of a lamellar eutectic dendrite with an incident flow [J]. Philos. Trans. Roy. Soc., 2018, 376A: 20170209
12 Li M J, Kuribayashi K. Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts [J]. Metall. Mater. Trans., 2003, 34A: 2999
13 Wei X X, Lin X, Xu W, et al. Remelting-induced anomalous eutectic formation during solidification of deeply undercooled eutectic alloy melts [J]. Acta Mater., 2015, 95: 44
14 Liu L, Li J F, Zhou Y H. Solidification of undercooled eutectic alloys containing a third element [J]. Acta Mater, 2009, 57: 1536
15 Wang N, Kalay Y E, Trivedi R. Eutectic-to-metallic glass transition in the Al-Sm system [J]. Acta Mater., 2011, 59: 6604
16 Dong H, Chen Y Z, Shan G B, et al. On the nonequilibrium interface kinetics of rapid coupled eutectic growth [J]. Metall. Mater. Trans., 2017, 48A: 3823
17 Magnin P, Trivedi R. Eutectic growth: A modification of the Jackson and Hunt theory [J]. Acta Metall. Mater., 1991, 39: 453
18 Catalina A V, Sen S, Stefanescu D M. A new analytical approach to predict spacing selection in lamellar and rod eutectic systems [J]. Metall. Mater. Trans., 2003, 34A: 383
19 Meng G H, Lin X. Characteristic scale selection of lamellar spacings in binary eutectic solidification [J]. Acta Phys. Sin., 2014, 63: 068104
19 孟广慧, 林 鑫. 二元层片共晶凝固过程的特征尺度选择 [J]. 物理学报, 2014, 63: 068104
20 Wang H F, Liu F, Herlach D M. Kinetics of triple-junctions in eutectic solidification: A sharp interface model [J]. J. Mater. Sci., 2015, 50: 176
21 Galenko P K, Herlach D M. Diffusionless crystal growth in rapidly solidifying eutectic systems [J]. Phys. Rev. Lett., 2006, 96: 150602
22 Xu J F, Galenko P K. Effects of local nonequilibrium in rapid eutectic solidification—Part 1: Statement of the problem and general solution [J]. Math. Methods Appl. Sci., doi: 10.1002/mma.6960
23 Xu J F, Rettenmayr M, Galenko P K. Effects of local nonequilibrium in rapid eutectic solidification—Part 2: Analysis of effects and comparison to experiment [J]. Math. Methods Appl. Sci., doi: 10.1002/mma.7004
24 Azadehranjbar S, Shield J E. Multiple origins of anomalous eutectic microstructure in rapidly solidified Mg-Al alloy [J]. Materialia,
24 2020, 9: 100625
25 Fick A. On liquid diffusion [J]. J. Membr. Sci., 1955, 100: 33
26 Trivedi R, Kurz W. Microstructure selection in eutectic alloy systems [A]. Solidification Processing of Eutectic Alloys [C]. Warrendale, PA: TMS, 1988: 3
27 Trivedi R, Kurz W. Modeling of solidification microstructures in concentrated solutions and intermetallic systems [J]. Metall. Trans., 1990, 21A: 1311
28 Aziz M J. Model for solute redistribution during rapid solidification [J]. J. Appl. Phys., 1982, 53: 1158
29 Galenko P K, Jou D. Rapid solidification as non-ergodic phenomenon [J]. Phys. Rep., 2019, 818: 1
30 Tang L. Research on the microstructure evolution of Al-38.5%Cu hypereutectic alloy at constant and changing growth rates under directional solidification [D]. Xi'an: Northwestern Polytechnical University, 2007
30 唐 玲. Al-38.5%Cu过共晶合金恒速和跃迁变速定向凝固下的组织演化研究 [D]. 西安: 西北工业大学, 2007
31 Fopp P, Kolbe M, Kargl F, et al. Unexpected behavior of the crystal growth velocity at the hypercooling limit [J]. Phys. Rev. Mater. 2020, 4: 073405
32 Teppa O, Taskinen P. Thermodynamic assessment of Ni-B phase diagram [J]. Mater. Sci. Technol., 1993, 9: 205
33 Xu J F, Liu F, Zhang D. Phase selection of undercooled solidification of Ni-4.5wt% B alloy [J]. J. Mater. Res., 2013, 28: 3347
34 Raghavan V. B-Co-Fe (boron-cobalt-iron) [J]. J. Phase Equilib. Diffus., 2012, 33: 392
35 Tokunaga T, Ohtani H, Hasebe M. Thermodynamic study of phase equilibria in the Ni-Fe-B system [J]. J. Phase Equilib., 2005, 46: 1193
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[4] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[5] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[6] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[8] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[9] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[10] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[11] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[12] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[13] 张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.
[14] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[15] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.