Please wait a minute...
金属学报  2010, Vol. 46 Issue (2): 147-154    DOI: 10.3724/SP.J.1037.2009.00533
  论文 本期目录 | 过刊浏览 |
AZ31镁合金中拉伸孪晶静态再结晶的分析
李萧;杨平;孟利;崔凤娥
北京科技大学材料科学与工程学院; 北京 100083
ANALYSIS OF THE STATIC RECRYSTALLIZATION AT TENSION TWINS IN AZ31 MAGNESIUM ALLOY
LI Xiao; YANG Ping; MENG Li; CUI Feng’e
School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
引用本文:

李萧 杨平 孟利 崔凤娥. AZ31镁合金中拉伸孪晶静态再结晶的分析[J]. 金属学报, 2010, 46(2): 147-154.
, . ANALYSIS OF THE STATIC RECRYSTALLIZATION AT TENSION TWINS IN AZ31 MAGNESIUM ALLOY[J]. Acta Metall Sin, 2010, 46(2): 147-154.

全文: PDF(5367 KB)  
摘要: 

基于前期工作对压缩孪晶静态再结晶的分析, 主要利用XRD和EBSD技术进一步研究AZ31镁合金中拉伸孪晶静态再结晶过程中组织和织构的演变规律, 以及再结晶初期新晶粒的取向特征. 结果表明: 拉伸孪晶不能有效地促进再结晶形核, 其细化晶粒的效果不显著, 其再结晶速率显著延迟于压缩孪晶; 退火过程中并没有生成新的再结晶织构组分, 表现为初始基面织构的减弱; 新晶粒优 先在拉伸孪晶的变体交叉处, 或拉伸孪晶与压缩孪晶的交叉处形核, 但其取向规律性不强, 没有遵循初始拉伸或压缩孪晶内的取 向规律. 同时还对拉伸与压缩孪晶的再结晶行为进行了比较.

关键词 镁合金拉伸孪晶织构再结晶取向    
Abstract

Due to the poor plasticity of magnesium alloys at room temperature (about 15%), twinning plays an important role in the deformation of magnesium alloys, and twins will be the dominant recrystallization nucleation sites. There are at least two types of twinning in magnesium: the {1012}–type tension twinning and the {1011}–type compression twinning. Tension twinning proceeds much more easily than compression twinning since its volume fraction is much higher than that of compression twins, which may have a promotion effect on the recrystallization to a certain degree. Based on the previous research on the static recrystallization at compression twins, the evolution of microstructure and texture in AZ31 magnesium alloy during its static recystallization at tension twins was futher investigated; and the orientational characteristics of new grains formed at tension twins in the early stage of static recrystallization were analyzed by EBSD technique. The results showed that tension twins played only a subordinate role in recrystallization nucleation and suppressed recrystallization rate, thus failed to rfine grain size effectively. The strong basal texture waretained and weakened wih no new texture component being detectd dring annealing. New grains were observed to nucleae preferentially at the intersections of tension twin variants or the intersections between tension twins and compression twins. Their orientations were relative random and are strongly scattered from those of original tension twins or compression twins. A comparison of the recrystallization at tension twins and compression twins was made.

Key wordsmagnesium alloy    tension twin    texture    recystallization    orienaion
收稿日期: 2009-08-10     
基金资助:

国家自然科学基金项目资助50571009

作者简介: 李萧, 女, 1980年生, 博士生

[1] Gehrmann R, Frommert M M, Gottstein G. Mater Sci Eng, 2005; A395: 338
[2] Agnew S R, Duygulu O. Int J Plast, 2005; 21: 1161
[3] Tucker M T, Horstemeyer M F, Gullett P M, Kadiri H E, Whittington W R. Scr Mater, 2009; 60: 182
[4] Kelley E W, Hosford Jr. W F. Trans AIME, 1968; 242: 5
[5] Wonsiewicz B C, Backofen W A. Trans AIME, 1967; 239: 1422
[6] Hartt WH, Reed–Hill R E. Trans Metall Soc AIME, 1968; 242: 1127
[7] Al–Samman T, Gottstein G. Mater Sci Eng, 2008; A490: 411
[8] P´erez–Prado M T, del Valle J A, Contreras J M, Ruano O A. Scr Mater, 2004; 50: 661
[9] Yin D L, Zhang K F, Wang G F, Han W B. Mater Sci Eng, 2005; A392: 320
[10] Prasad Y V R K, Rao K P. Mater Sci Eng, 2006; A432: 170
[11] del Valle J A, Ruano O A. Mater Sci Eng, 2008; A487: 473
[12] Nave M D, Barnett M R. Scr Mater, 2004; 51: 881
[13] Cottam R, Robson J, Lorimer G, Davis B. Ceram Trans, 2008; 200: 501
[14] Jager A, Luk´ac P, Gartnerov´a V, Haloda J, Dopita M. Mater Sci Eng, 2006; A432: 20
[15] Mackenzie L W F, Pekguleryuz M O. Scr Mater, 2008; 59: 665
[16] Yi S B, Zaefferer S, Brokmeier H G. Mater Sci Eng, 2006; A424: 275
[17] Yang X Y, Miura H, Sakai T. Trans Nonferrous Met Soc China, 2007; 17: 1139
[18] Beer A G, Barnett M R. Mater Sci Eng, 2008; A485: 318
[19] Cottam R, Robson J, Lorimer G, Davis B. Mater Sci Eng, 2008; A485: 375
[20] Li X, Yang P, Wang L N, Meng L, Cui F E. Mater Sci Eng, 2009; A517: 160

[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[6] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[7] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[8] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[9] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[10] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[11] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[12] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[13] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[14] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[15] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.