Please wait a minute...
金属学报  2010, Vol. 46 Issue (2): 213-220    DOI: 10.3724/SP.J.1037.2009.00449
  论文 本期目录 | 过刊浏览 |
两种铸造镍基高温合金在长期时效期间的微观组织和力学性能演变
秦学智;郭建亭; 袁 超; 侯介山; 周兰章; 叶恒强
中国科学院金属研究所; 沈阳 110016
EVOLUTIONS OF MICROSTRUCTURES AND MECHANICAL PROPERTIES OF TWO CAST Ni–BASED SUPERALLOYS DURING LONG–TERM THERMAL EXPOSURE
QIN Xuezhi; GUO Jianting; YUAN Chao; HOU Jieshan; ZHOU Lanzhang; YE Hengqiang
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

秦学智 郭建亭 袁超 侯介山 叶恒强. 两种铸造镍基高温合金在长期时效期间的微观组织和力学性能演变[J]. 金属学报, 2010, 46(2): 213-220.
. EVOLUTIONS OF MICROSTRUCTURES AND MECHANICAL PROPERTIES OF TWO CAST Ni–BASED SUPERALLOYS DURING LONG–TERM THERMAL EXPOSURE[J]. Acta Metall Sin, 2010, 46(2): 213-220.

全文: PDF(4382 KB)  
摘要: 

长期时效期间K452和K446合金中的γ'相形貌都保持球形, 尺寸不断粗化, 但K446中γ'相的粗化速率总体上比 K452快. 初生MC的热稳定性不仅与MC本身的化学成分密切相关, 而且与合金成分有关; 合金中γ基体的热稳定性(即晶内二次碳化物或TCP相的析出)与初生MC的热稳定性有关; 晶界粗化通过γ沉淀及镶嵌于其中的碳化物(M23C6M6C)的析出和长大来实现.γ'相粗化、初生MC分解、晶界粗化以及二次碳化物或TCP相的析出等, 使合金的力学性能明显下降.

关键词 镍基高温合金 长期时效 微观组织稳定性 力学性能    
Abstract

K452 and K446 alloys are two newly developed Ni–based cast superalloys, designed for microstructural component applications of gas turbines in marine and industrial fields. The two alloys perform well under laboratory conditions with good fatigue resistance, hot–corrosion resistance,
and tensile– and stress–rupture properties, in addition to being completely oxidation resistant up to 900 ℃. However, due to the high contents of Cr, W and Mo, both K452 and K446 alloys tend to experience a severe microstructural degeneration when exposed at elevated temperatures. In this
paper, the microstructural stabilities and their influences on the mechanical properties of the two alloys were comparatively examined during thermal exposure at 800—900 ℃ for 1×103—1×104 h. It is found that the  γ' phases in the two alloys keep coarsening and are both spherical during the whole exposure. The coarsening rate of the γ′ phase in K446 is in general faster than that in K452, the probable reason of which is that elements diffuse faster in K446 than in K452 due to the different heat treatment regimes they suffered. The thermal stabilities of primary MC carbides are closely related to the chemical compositions of both the carbides and the alloys. The carbide in K452 is instable and tends to completely decompose via three different reactions, whereas the carbide in K446 is stablead degenerates only ta tiny degree mainly via one reaction. Primary MC degeneration in K452 releases a significant amount of C into the supersaturated  γ matrix, facilitating the formation of M23C6 throughout the alloy, whereas the MC degeneration in K446 hardly releases C into the γ matrix so that the μ phase precipitates everywhere due to the lack of C. It seems that the kind of the phase precipitated from the supersaturated matrix during thermal exposure or service is dependent on the stability of primary MC. In K452 the blocky, closely spaced grain boundary M23C6 particles engulfed in  γ′ is the optimal structure of grain boundarywhere a stress–rupture life peak occurs, whereas in K446 the precipitation of a significant amount of μ phase degrades sharply the stress–rupture life.

Key wordsNi--based superalloy    long--term thermal exposure    microstructural stability    mechanical property
收稿日期: 2009-07-06     
作者简介: 秦学智, 男, 1975年生, 助理研究员, 博士

[1] Ross E W, Sims C T. In: Sims C T, Stoloff N S, Hagel W C eds., Superalloys II, New York, NY: Wiley, 1987: 97
[2] Koul A K, Castillo R. Metall Trans, 1988; 19A: 2049
[3] Qin X Z, Guo J T, Yuan C, Chen C L, Ye H Q. Metall Mater Trans, 2007; 38A: 3014
[4] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 258
[5] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 2275
[6] Qin X Z, Guo J T, Yuan C, Yang G X, Zhou L Z, Ye H Q. J Mater Sci, 2009; 44: 4840
[7] Stevens R A, Flewitt P E J. Mater Sci Eng, 1979; A37: 237
[8] Sha W. Scr Mater, 2000; 42: 549
[9] Rae C M F, Reed R C. Acta Metall, 2001; 49: 4113
[10] Chen Q Z, Jones N, Knowles D M. Acta Metall, 2002; 50: 1095
[11] Guo J T. Materials Science and Engineering for Superalloys . Vol.1, Beijing: Science Press, 2008: 126
 (郭建亭. 高温合金材料学(上册). 北京: 科学出版社, 2008: 126)
[12] Lvov G, Levit V I, Kaufman M J, Metall Mater Trans, 2004; 35A: 1669
[13] Choi B G, Kom I S, Kim D H, Jo C Y. Mater Sci Eng, 2008; A478: 329
[14] Qin X Z, Guo J T, Yuan C, Chen C L, Hou J S, Ye H Q. Mater Sci Eng, 2008; A485: 74
[15] Furillo F T, Davidson J M, Tien J K. Mater Sci Eng, 1979; A39: 267
[16] Chen Q Z, Jones C N, Knowles D M. Mater Sci Eng, 2004; A385: 402
[17] Volek A, Singer R F, Buergel R, Grossmann J, Wang Y. Metall Mater Trans, 2006; 37A: 405
[18] Simonetti M, Caron P. Mater Sci Eng, 1998; A254: 1
[19] Pessah M, Caron P, Khan T. In: Antolovich S D, Strusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale PA: TMS, 1992: 567

[1] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[10] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[12] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[13] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[14] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.