Please wait a minute...
金属学报  2025, Vol. 61 Issue (3): 488-498    DOI: 10.11900/0412.1961.2024.00385
  研究论文 本期目录 | 过刊浏览 |
AZ31镁合金双峰组织形成机制及其变形行为
周雯慧, 熊锦涛, 黄思程, 王鹏昊, 刘勇()
南昌大学 先进制造学院 轻合金材料江西省重点实验室 南昌 330031
Formation Mechanism and Deformation Behavior of AZ31 Magnesium Alloy Bimodal Structure
ZHOU Wenhui, XIONG Jintao, HUANG Sicheng, WANG Penghao, LIU Yong()
Jiangxi Key Laboratory of Light Alloy, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
引用本文:

周雯慧, 熊锦涛, 黄思程, 王鹏昊, 刘勇. AZ31镁合金双峰组织形成机制及其变形行为[J]. 金属学报, 2025, 61(3): 488-498.
Wenhui ZHOU, Jintao XIONG, Sicheng HUANG, Penghao WANG, Yong LIU. Formation Mechanism and Deformation Behavior of AZ31 Magnesium Alloy Bimodal Structure[J]. Acta Metall Sin, 2025, 61(3): 488-498.

全文: PDF(3217 KB)   HTML
摘要: 

由变形粗晶与再结晶细晶组成的双峰组织可兼顾高强度和高塑性。其中细晶能有效阻碍位错的运动,提供高强度;粗晶为累积的位错提供额外的容纳空间,提高塑性。本工作通过控制挤压工艺在AZ31镁合金中构筑双峰组织,研究了双峰组织的形成机制及其变形行为。双峰组织的形成归因于塑性变形阶段的不完全动态再结晶以及第二相粒子的激发成核效应。变形过程中,细晶承受较大的应力,而粗晶则承载更多的应变。细晶是AZ31镁合金强度显著提升的关键,粗晶的协调变形作用则为其优异的塑性提供了保障。得益于双峰组织良好的变形能力,对双峰组织AZ31镁合金进一步挤压,成功制备了细晶AZ31镁合金,合金展现出优异的力学性能:抗拉强度达到265 MPa,屈服强度为112 MPa,并保持了19%的伸长率,实现了强度与塑性的协同提升。

关键词 变形镁合金双峰组织变形行为动态再结晶机制强塑性协同提升    
Abstract

The magnesium alloy exhibits a notable plasticity limitation due to its hcp structure. In recent years, the development of a bimodal structure, consisting of deformed coarse grains and recrystallized fine grains, has emerged as an effective strategy to balance the strength and plasticity of magnesium alloys, offering a new avenue for property. This optimization study investigates the formation mechanism and deformation behavior of the bimodal structure in AZ31 magnesium alloy by controlling the extrusion process. The formation of the bimodal structure is attributed to the incomplete dynamic recrystallization during plastic deformation and the particle-stimulated nucleation effect of the secondary phase. During deformation, fine grains endure higher stresses, while coarse grains accommodate more strain. The fine grains significantly contribute to the improved strength of the AZ31 magnesium alloy, while the coordinated deformation of the coarse grains ensures excellent plasticity. Leveraging the superior deformation capability of the bimodal structure, fine-grained AZ31 magnesium alloy was successfully fabricated through further extrusion, achieving outstanding mechanical properties: a tensile strength of 265 MPa, a yield strength of 112 MPa, and an elongation of 19%. This demonstrates the synergistic enhancement of strength and plasticity.

Key wordsdeformed magnesium alloy    bimodal structure    deformation behavior    DRX mechanism    synergistic enhancement of strength and plasticity
收稿日期: 2024-11-15     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2022YFC2905204);国家自然科学基金项目(52061028);江西省重点研发专项项目(20223-BBE51021);江西省重大科技成果熟化与工程化项目(20243BDD40002);江西省“千人计划”人才项目(S2021GDKX-0864)
通讯作者: 刘 勇,liuyong@ncu.edu.cn,主要从事高性能镁合金成形研究
Corresponding author: LIU Yong, professor, Tel: 13576087535, E-mail: liuyong@ncu.edu.cn
作者简介: 周雯慧,女,2000年生,硕士生
图1  AZ31镁合金挤压过程及取样位置示意图
图2  AZ31镁合金的XRD谱、粗晶晶粒尺寸统计分析及粗晶显微组织OM和SEM像
图3  不同方向双峰组织AZ31镁合金的典型OM像
图4  不同方向双峰组织AZ31镁合金的第二相分布
图5  不同方向细晶AZ31镁合金显微组织的OM像
图6  双峰组织与细晶AZ31镁合金动态再结晶(DRX)晶粒尺寸和体积分数统计分析
图7  双峰组织AZ31镁合金拉伸样品横截面显微组织及取样位置
图8  双峰组织与细晶AZ31镁合金的力学性能
图9  AZ31镁合金的应力-应变曲线、加工硬化曲线和拉伸断口形貌
Reinforcement methodYS / MPaUTS / MPaEL / %Ref.
Coarse-grain43 ± 4170 ± 913 ± 0.9This work
Bimodal structure77 ± 9217 ± 1218 ± 0.7
Fine-grain112 ± 12265 ± 1419 ± 1.0
Grain refinement-200 ± 616 ± 1.0[7]
Suppressing intergranular deformation380 ± 7430 ± 1113 ± 0.8[22]
Grain refinement and texture change220 ± 4253 ± 713 ± 0.9[23]
Grain refinement250 ± 7310 ± 1014 ± 1.0[24]
Grain refinement203 ± 6200 ± 1012 ± 1.0[25]
Grain refinement-290 ± 513 ± 0.6[26]
表1  不同成型方式AZ31镁合金力学性能比较[7,22~26]
图10  AZ31镁合金双峰组织的形成机制
1 Yang Z, Li J P, Zhang J X, et al. Review on research and development of magnesium alloys [J]. Acta Metall. Sin., 2008, 21: 313
2 Pan F S, Jiang B. Development and application of plastic processing technology of magnesium alloy [J]. Acta Metall. Sin., 2021, 57: 1362
2 潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
3 Wang H Y, Xia N, Bu R Y, et al. Current research and future prospect on low-alloyed high-performance wrought magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
3 王慧远, 夏 楠, 布如宇 等. 低合金化高性能变形镁合金研究现状及展望 [J]. 金属学报, 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
4 Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
4 吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
5 Liu Y, Zeng G, Liu H, et al. Grain refinement mechanism and research progress of magnesium alloy incorporating Zr [J]. Acta Metall. Sin., 2024, 60: 129
doi: 10.11900/0412.1961.2023.00241
5 刘 勇, 曾 刚, 刘 洪 等. 含Zr镁合金晶粒细化机理与研究进展 [J]. 金属学报, 2024, 60: 129
6 Xu J, Wang X W, Shirooyeh M, et al. Microhardness, microstructure and tensile behavior of an AZ31 magnesium alloy processed by high-pressure torsion [J]. J. Mater. Sci., 2015, 50: 7424
7 Muralidhar A, Narendranath S, Shivananda Nayaka H. Effect of equal channel angular pressing on AZ31 wrought magnesium alloys [J]. J. Magnes. Alloy., 2013, 1: 336
8 Rao X X, Wu Y P, Pei X B, et al. Influence of rolling temperature on microstructural evolution and mechanical behavior of AZ31 alloy with accumulative roll bonding [J]. Mater. Sci. Eng., 2019, A754: 112
9 Han T Z, Huang G S, Deng Q Y, et al. Grain refining and mechanical properties of AZ31 alloy processed by accumulated extrusion bonding [J]. J. Alloy. Compd., 2018, 745: 599
10 Prasad S V S, Prasad S B, Verma K, et al. The role and significance of magnesium in modern day research—A review [J]. J. Magnes. Alloy., 2022, 10: 1
11 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
12 Rong W, Zhang Y, Wu Y J, et al. The role of bimodal-grained structure in strengthening tensile strength and decreasing yield asymmetry of Mg-Gd-Zn-Zr alloys [J]. Mater. Sci. Eng., 2019, A740-741: 262
13 Hu K, Li C Y, Xu G J, et al. Effect of extrusion temperature on the microstructure and mechanical properties of low Zn containing wrought Mg alloy micro-alloying with Mn and La-rich misch metal [J]. Mater. Sci. Eng., 2019, A742: 692
14 Chen J J, Tang C P, Xie H M, et al. Research progress of bimodal-grained structure in copper aluminum and magnesium alloys [J]. Trans. Mater. Heat Treat., 2022, 43: 1
14 陈佳俊, 唐昌平, 谢红梅 等. 双峰分布晶粒在铜、铝、镁合金中的研究进展 [J]. 材料热处理学报, 2022, 43: 1
doi: 10.13289/j.issn.1009-6264.2021-0465
15 Zha M, Zhang X H, Zhang H, et al. Achieving bimodal microstructure and enhanced tensile properties of Mg-9Al-1Zn alloy by tailoring deformation temperature during hard plate rolling (HPR) [J]. J. Alloys Compd., 2018, 765: 1228
16 Shokri M, Zarei-Hanzaki A, Abedi H R, et al. On the microstructure and RE-texture evolution during hot tensile deformation of Mg-Gd-Y-Zn-Zr alloy [J]. J. Mater. Res. Technol., 2021, 15: 6974
17 Tong L B, Zheng M Y, Cheng L R, et al. Effect of extrusion ratio on microstructure, texture and mechanical properties of indirectly extruded Mg-Zn-Ca alloy [J]. Mater. Sci. Eng., 2013, A569: 48
18 Bai S W, Fang G, Zhou J. Construction of three-dimensional extrusion limit diagram for magnesium alloy using artificial neural network and its validation [J]. J. Mater. Process. Technol., 2020, 275: 116361
19 Shang Q, Wu F, Chen H B, et al. Enhancing tensile properties of extruded AZ31 rod by introducing gradient bimodal microstructure [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 3673
20 Chen G P, Zhou T R, Yan H, et al. Effect of predeformation manner on semi-solid structure of AZ61 magnesium alloy in sima process [J]. Acta Metall. Sin., 2008, 21: 197
21 Azeem M A, Tewari A, Mishra S, et al. Development of novel grain morphology during hot extrusion of magnesium AZ21 alloy [J]. Acta Mater., 2010, 58: 1495
22 Zeng Z R, Zhu Y M, Liu R L, et al. Achieving exceptionally high strength in Mg-3Al-1Zn-0.3Mn extrusions via suppressing intergranular deformation [J]. Acta Mater., 2018, 160: 97
23 Wang Y, Li F, Bian N, et al. Mechanism of plasticity enhancement of AZ31B magnesium alloy sheet by accumulative alternating back extrusion [J]. J. Magnes. Alloy., 2023, 11: 1791
24 Xia K, Wang J T, Wu X, et al. Equal channel angular pressing of magnesium alloy AZ31 [J]. Mater. Sci. Eng., 2005, A410-411: 324
25 Li Y Q, Li F, Niu W T, et al. Grain refinement and strengthening mechanism of AZ31 magnesium alloy formed by pre-upsetting alternating forward extrusion [J]. J. Alloys Compd., 2024, 977: 173421
26 Li F, Zeng X, Bian N. Microstructure of AZ31 magnesium alloy produced by continuous variable cross-section direct extrusion (CVCDE) [J]. Mater. Lett., 2014, 135: 79
27 Robson J D, Henry D T, Davis B. Particle effects on recrystallization in magnesium-manganese alloys: Particle-stimulated nucleation [J]. Acta Mater., 2009, 57: 2739
28 Liu J, Cui Z, Ruan L. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B [J]. Mater. Sci. Eng., 2011, A529: 300
29 Deng J F, Tian J, Zhou Y C, et al. Plastic deformation mechanism and hardening mechanism of rolled rare-earth magnesium alloy thin sheet [J]. Mater. Des., 2022, 218: 110678
30 Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues [J]. Scr. Mater., 2003, 48: 119
31 Li J R, Xie D S, Zhang D D, et al. Microstructure evolution mechanism of new low-alloyed high-strength Mg-0.2Ce-0.2Ca alloy during extrusion [J]. Acta Metall. Sin., 2023, 59: 1087
31 李景仁, 谢东升, 张栋栋 等. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理 [J]. 金属学报, 2023, 59: 1087
doi: 10.11900/0412.1961.2022.00290
32 Randle V, Davies H, Cross I. Grain boundary misorientation distributions [J]. Curr. Opin. Solid State Mater. Sci., 2001, 5: 3
33 Liu X, Liu Y, Jin B, et al. Microstructure evolution and mechanical properties of a SMATed Mg alloy under in situ SEM tensile testing [J]. J. Mater. Sci. Technol., 2017, 33: 224
34 Han T Z, Huang G S, Li H, et al. Strength-ductility balance of AZ31 magnesium alloy via accumulated extrusion bonding combined with two-stage artificial cooling [J]. J. Magnes. Alloy., 2023, 11: 1549
35 Wang Y, Xia Z Y, Xiong J P, et al. Enhancing the ductility of cast Mg-Li alloys via dispersed α-Mg phase mitigating the dimension and distribution of interspersed eutectics along grain boundaries [J]. J. Magnes. Alloy., 2024, 12: 4722
36 Shi B D, Yang C, Peng Y, et al. Anisotropy of wrought magnesium alloys: A focused overview [J]. J. Magnes. Alloy., 2022, 10: 1476
37 Zhang H, Yan Y, Fan J F, et al. Improved mechanical properties of AZ31 magnesium alloy plates by pre-rolling followed by warm compression [J]. Mater. Sci. Eng., 2014, A618: 540
38 Wang J Y, Chen Y W, Chen Z, et al. Deformation mechanisms of Mg-Ca-Zn alloys studied by means of micropillar compression tests [J]. Acta Mater., 2021, 217: 117151
[1] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 范国华, 缪克松, 李丹阳, 夏夷平, 吴昊. 从局域应力/应变视角理解异构金属材料的强韧化行为[J]. 金属学报, 2022, 58(11): 1427-1440.
[4] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[5] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[6] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[7] 吕昭平, 雷智锋, 黄海龙, 刘少飞, 张凡, 段大波, 曹培培, 吴渊, 刘雄军, 王辉. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54(11): 1553-1566.
[8] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
[9] 刘永康, 黄海友, 谢建新. 连续柱状晶组织CuNi10Fe1Mn合金变形行为的各向异性[J]. 金属学报, 2015, 51(1): 40-48.
[10] 董丹阳,刘杨,王磊,苏亮进. 应变速率对DP780钢动态拉伸变形行为的影响[J]. 金属学报, 2013, 49(2): 159-166.
[11] 董丹阳, 刘杨, 王磊, 杨玉玲, 李金凤, 金梦梦. 应变速率对DP780钢激光焊接接头动态变形行为的影响[J]. 金属学报, 2013, 49(12): 1493-1500.
[12] 刘杨 王磊 何思斯 冯飞 吕旭东 张北江. 长期时效对GH4169合金动态拉伸变形行为的影响[J]. 金属学报, 2012, 48(1): 49-55.
[13] 唐正友 吴志强 昝娜 丁桦. 高锰TRIP/TWIP效应共生钢高速变形过程中的组织演变及变形行为[J]. 金属学报, 2011, 47(11): 1426-1433.
[14] 荣莉; 聂祚仁; 左铁镛 . 纯镁旋锻变形过程的有限元模拟[J]. 金属学报, 2006, 42(4): 394-398 .
[15] 唐伟; 韩恩厚; 徐永波; 刘路 . 热处理对AZ80镁合金结构及性能的影响[J]. 金属学报, 2005, 41(11): 1199-1206 .