Please wait a minute...
金属学报  2025, Vol. 61 Issue (1): 129-142    DOI: 10.11900/0412.1961.2024.00256
  研究论文 本期目录 | 过刊浏览 |
脉冲电流对AZ91镁合金温挤压过程中动态析出和微观组织的影响
王彬杉1,2, 徐光1,2, 任睿1,2, 张强1,2,3, 单召辉4, 樊建锋1,2,3()
1 太原理工大学 新材料界面科学与工程教育部重点实验室 太原 030024
2 太原理工大学 材料科学与工程学院 太原 030024
3 太原理工大学 镁基材料山西省重点实验室 太原 030024
4 太原理工大学 物理与光电学院 太原 030024
Effect of Electropulse on Dynamic Precipitation and Microstructure of AZ91 Magnesium Alloy During Warm Extrusion
WANG Binshan1,2, XU Guang1,2, REN Rui1,2, ZHANG Qiang1,2,3, SHAN Zhaohui4, FAN Jianfeng1,2,3()
1 Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
2 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
3 Shanxi Key Laboratory of Advanced Magnesium Based Materials, Taiyuan University of Technology, Taiyuan 030024, China
4 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
引用本文:

王彬杉, 徐光, 任睿, 张强, 单召辉, 樊建锋. 脉冲电流对AZ91镁合金温挤压过程中动态析出和微观组织的影响[J]. 金属学报, 2025, 61(1): 129-142.
Binshan WANG, Guang XU, Rui REN, Qiang ZHANG, Zhaohui SHAN, Jianfeng FAN. Effect of Electropulse on Dynamic Precipitation and Microstructure of AZ91 Magnesium Alloy During Warm Extrusion[J]. Acta Metall Sin, 2025, 61(1): 129-142.

全文: PDF(5078 KB)   HTML
摘要: 

脉冲电流辅助成形工艺具有提高成型能力及细化微观组织等优点,被广泛用到各种塑性变形过程中。然而,关于脉冲电流在动态挤压变形过程中的作用尚不明确。本工作利用脉冲电流辅助挤压(EPAE)技术,研究了脉冲电流对于AZ91镁合金挤压过程中动态析出和微观组织的影响。结果表明,在能够完全动态再结晶(DRX)的临界变形条件下,EPAE工艺可以降低AZ91镁合金挤压过程中β-Mg17Al12相的体积分数并促使其发生球化,同时能够促进平均晶粒尺寸和最大基面织构强度的增加,且峰值电流密度越高,效果越明显。与常规热挤压相比,峰值电流密度为6.4 × 107 A/m2的EPAE工艺促使AZ91镁合金中β-Mg17Al12相的体积分数从76.9%降低至16.5%,平均晶粒尺寸从1.07 μm增加至3.54 μm,最大织构强度从3.39增加至5.92。在不均匀分布的β-Mg17Al12相的钉扎作用下,最终EPAE态AZ91镁合金内部形成双峰组织。实验及理论分析表明,脉冲电流中热效应和非热效应的共同作用所导致的AZ91镁合金挤压过程中的Gibbs自由能变化量和原子扩散通量的提高是上述实验现象发生的主要原因,在促进了β-Mg17Al12相的溶解及其附近Al溶质原子均匀分布的同时提高了晶界迁移速率。同时,脉冲电流可以通过其漂移电子对基面<a>滑移的加速作用促进β-Mg17Al12相颗粒贫乏区中晶粒的旋转。

关键词 AZ91镁合金脉冲电流辅助挤压β-Mg17Al12动态析出晶粒长大    
Abstract

The electropulse-assisted forming process has been widely used in various plastic deformation applications owing to its advantages in improving formability and refining microstructure. However, the influence of electropulse on the dynamic extrusion deformation process remains unclear. In this study, the effects of electropulse on dynamic precipitation and microstructure evolution of AZ91 magnesium alloy during extrusion were investigated using electropulse-assisted extrusion (EPAE) technology. The results demonstrate that under critical deformation conditions for complete dynamic recrystallization, the EPAE process reduces the volume fraction of the β-Mg17Al12 phase, promotes its spheroidization, and enhances both the average grain size and the maximum basal texture intensity. These effects become more pronounced with increasing peak current density. Specifically, with a peak current density of 6.4 × 107 A/m2 during the EPAE process, the volume fraction of the β-Mg17Al12 phase decreased from 76.9% to 16.5%, the average grain size increased from 1.07 μm to 3.54 μm, and the maximum basal texture intensity increased from 3.39 to 5.92, compared to conventional hot extrusion. The bimodal structure observed in the EPAE-processed AZ91 alloy was attributed to the pinning effect caused by the inhomogeneous distribution of the β-Mg17Al12 phase. Experimental and theoretical analyses indicated that the increase of Gibbs free energy variation and atomic diffusion flux during extrusion of AZ91 alloy caused by the combined thermal and athermal effects of the pulsed current was the main reason for the experimental phenomena, which promoting the solution of β-Mg17Al12 phase and uniform distribution of Al solute atoms nearby while also increasing the grain boundary migration rate. Moreover, the electropulse strengthened the basal texture in β-Mg17Al12 particle-depleted regions by accelerating basal <a> slip.

Key wordsAZ91 magnesium alloy    electropulse assisted extrusion    β-Mg17Al12 phase    dynamic precipitation    grain growth
收稿日期: 2024-08-14     
ZTFLH:  TG146.2  
基金资助:山西省自然科学基金项目(20210302123134);山西省自然科学基金项目(202203021221071);山西省自然科学基金项目(202203021211157);山西省留学委员会项目(2022-045);山西浙大研究院新材料与化工研究院基础研究项目(2021SX-FR005)
通讯作者: 樊建锋,fanjianfeng@tyut.edu.cn,主要从事镁合金新材料研究
Corresponding author: FAN Jianfeng, professor, Tel: 13935107463, E-mail: fanjianfeng@tyut.edu.cn
作者简介: 王彬杉,男,1996年生,博士生
图1  脉冲电流辅助挤压(EPAE)工艺以及脉冲电流产生的方波示意图

Sample

Ram

velocity

mm·s-1

Extrusion

ratio

Frequency

Hz

Duration

μs

Current intensity

A

Current density

107 A·m-2

Duty

ratio

250EX116∶1-----
EPAE-1116∶1100050106673.40.05
EPAE-2116∶1100050160005.10.05
EPAE-3116∶1100050200786.40.05
表1  AZ91镁合金的挤压工艺参数
图2  铸态和固溶态AZ91镁合金样品显微组织的OM及SEM-BSE像
图3  固溶态及挤压态AZ91镁合金的XRD谱及位错密度演变趋势
图4  挤压态AZ91镁合金样品的OM及SEM-BSE像
Sampledavg / μmdfg / μmdcg / μmfcg / %fβ / %dβav / μmrafβ / rTp / oC
250EX1.07---76.90.482.733.20270
EPAE-11.771.751.9309.154.80.525.122.11309
EPAE-22.091.973.0511.240.20.411.761.96320
EPAE-33.542.377.2324.516.50.501.330.66345
表2  挤压态AZ91镁合金样品中微观组织常数和挤出温度
图5  挤压态AZ91镁合金样品中不同类型晶粒及β-Mg17Al12相的平均尺寸和比例的演变趋势
图6  挤压态AZ91镁合金样品的SEM-SE像及EDS结果
图7  EPAE-3样品微观组织形貌
图8  250EX及EPAE-3样品典型的EBSD结果
图9  固溶态及挤压态样品的室温拉伸真应力-真应变曲线
Sampleσy / MPaσs / MPaδ / %
As-soluted811506.8
250EX3014289.8
EPAE-131844011.2
EPAE-226742913.4
EPAE-324040613.7
表3  固溶态及挤压态AZ91合金样品的力学性能
图10  不同挤压条件下β-Mg17Al12相溶解过程中Gibbs自由能变化示意图
图11  EPAE-3样品粗晶区和细晶区的典型EBSD结果
1 Aghion E, Bronfin B. Magnesium alloys development towards the 21st century[J]. Mater. Sci. Forum, 2000, 350-351: 19
2 Mordike B L, Ebert T. Magnesium: Properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37
3 Chen X H, Pan F S, Mao J J, et al. Effect of heat treatment on strain hardening of ZK60 Mg alloy[J]. Mater. Des., 2011, 32: 1526
4 Xu Q, Tang G Y, Jiang Y B. Thermal and electromigration effects of electropulsing on dynamic recrystallization in Mg-3Al-1Zn alloy[J]. Mater. Sci. Eng., 2011, A528: 4431
5 Wang S N. Effect of electric pulses on drawability and corrosion property of AZ31 magnesium alloy[D]. Beijing: Tsinghua University, 2009
5 王少楠. 电脉冲对AZ31镁合金冲压性能和腐蚀性能的影响[D]. 北京: 清华大学, 2009
6 Shan Z H, Yang J, Fan J F, et al. Extraordinary mechanical properties of AZ61 alloy processed by ECAP with 160° channel angle and EPT[J]. J. Magnes. Alloy., 2021, 9: 548
7 Jiang L Y, Zhang D F, Fan X W, et al. Microstructure and mechanical properties of as-extruded AZ80-xSn magnesium alloys[J]. Mater. Sci. Technol., 2016, 32: 1838
8 Stanford N, Atwell D. The effect of Mn-rich precipitates on the strength of AZ31 extrudates[J]. Metall. Mater. Trans., 2013, 44A: 4830
9 Moreau G, Cornet J A, Calais D. Acceleration de la diffusion chimique sous irradiation dans le systeme aluminium-magnesium[J]. J. Nucl. Mater., 1971, 38: 197
10 Zhu T P, Chen Z W, Gao W. Dissolution of eutectic β-Mg17Al12 phase in magnesium AZ91 cast alloy at temperatures close to eutectic temperature[J]. J. Mater. Eng. Perform., 2010, 19: 860
11 Shan Z H, Yang J, Fan J F, et al. Microstructure evolution and mechanical properties of an AZ61 alloy processed with TS-ECAP and EPT[J]. Mater. Sci. Eng., 2020, A780: 139195
12 Godfrey A, Cao W Q, Liu Q, et al. Stored energy, microstructure, and flow stress of deformed metals[J]. Metall. Mater. Trans., 2005, 36A: 2371
13 Lin B Y, Zhang H, Meng Y P, et al. Deformation behavior, microstructure evolution, and dynamic recrystallization mechanism of an AZ31 Mg alloy under high-throughput gradient thermal compression[J]. Mater. Sci. Eng., 2022, A847: 143338
14 Xu H, Liu M, Wang Y P, et al. Refined microstructure and dispersed precipitates in a gradient rolled AZ91 alloy under pulsed current[J]. Materialia, 2021, 20: 101245
15 Jeong H J, Kim M J, Park J W, et al. Effect of pulsed electric current on dissolution of Mg17Al12 phases in as-extruded AZ91 magnesium alloy[J]. Mater. Sci. Eng., 2017, A684: 668
16 Shan Z H, Zhang Y X, Wang B S, et al. Microstructural evolution and precipitate behavior of an AZ61 alloy plate processed with ECAP and electropulsing treatment[J]. J. Mater. Res. Technol., 2022, 19: 382
17 Qin R S, Samuel E I, Bhowmik A. Electropulse-induced cementite nanoparticle formation in deformed pearlitic steels[J]. J. Mater. Sci., 2011, 46: 2838
18 Conrad H. Influence of an electric or magnetic field on the liquid-solid transformation in materials and on the microstructure of the solid[J]. Mater. Sci. Eng., 2000, A287: 205
19 Qin R S, Zhou B L. Effect of electric current pulses on grain size in castings[J]. Int. J. Non-Equilib. Process., 1998, 11: 77
20 Wang X L, Guo J D, Wang Y M, et al. Segregation of lead in Cu-Zn alloy under electric current pulses[J]. Appl. Phys. Lett., 2006, 89: 061910
21 Jiang Y B, Tang G Y, Shek C, et al. Effect of electropulsing treatment on microstructure and tensile fracture behavior of aged Mg-9Al-1Zn alloy strip[J]. Appl. Phys., 2009, 97A: 607
22 Onodera Y, Hirano K. The effect of a.c. frequency on precipitation in Al-5.6 at % Zn[J]. J. Mater. Sci., 1984, 19: 3935
23 Sprecher A F, Mannan S L, Conrad H. On the temperature rise associated with the electroplastic effect in titanium[J]. Scr. Metall., 1983, 17: 769
24 Porter D A, Easterling K E, Sherif M Y. Phase Transformations in Metals and Alloys (Revised Reprint)[M]. 3rd Ed., Boca Raton: CRC Press, 2009: 312
25 Nabarro F R N. Dislocations in Solids[M]. Amsterdam: Elsevier, 1989: 499
26 Sprecher A F, Mannan S L, Conrad H. Overview no. 49: On the mechanisms for the electroplastic effect in metals[J]. Acta Metall., 1986, 34: 1145
27 Kim S H, You B S, Park S H. Effect of billet diameter on hot extrusion behavior of Mg-Al-Zn alloys and its influence on microstructure and mechanical properties[J]. J. Alloys Compd., 2017, 690: 417
28 Braszczyńska-Malik K N. Spherical shape of γ-Mg17Al12 precipitates in AZ91 magnesium alloy processed by equal-channel angular pressing[J]. J. Alloys Compd., 2009, 487: 263
29 Lee S W, Han G, Jun T S, et al. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy[J]. J. Mater. Sci. Technol., 2021, 66: 139
doi: 10.1016/j.jmst.2020.04.074
30 Di H S, Zhang X M, Wang G D, et al. Spheroidizing kinetics of eutectic carbide in the twin roll-casting of M2 high-speed steel[J]. J. Mater. Process. Technol., 2005, 166: 359
31 Huang K, Marthinsen K, Zhao Q L, et al. The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials[J]. Prog. Mater. Sci., 2018, 92: 284
32 Shi D K. Fundamentals of Materials Science[M]. 2nd Ed., Beijing: China Machine Press, 2003: 363
32 石德珂. 材料科学基础[M]. 第2版, 北京: 机械工业出版社, 2003: 363
33 Guo F, Zhang D F, Yang X S, et al. Strain-induced dynamic precipitation of Mg17Al12 phases in Mg-8Al alloys sheets rolled at 748 K[J]. Mater. Sci. Eng., 2015, A636: 516
34 Yan T L, Pei D, Cheng M H, et al. Development of Mg-6Al-4Sn-1Zn alloy sheets with ultra-high strength by combining extrusion and high-speed rolling[J]. J. Mater. Res. Technol., 2024, 29: 1487
35 Zhang Q, Li Q A, Chen X Y, et al. Dynamic precipitation and recrystallization mechanism during hot compression of Mg-Gd-Y-Zr alloy[J]. J. Mater. Res. Technol., 2021, 15: 37
doi: 10.1016/j.jmrt.2021.08.013
36 Okazaki K, Kagawa M, Conrad H. A study of the electroplastic effect in metals[J]. Scr. Metall., 1978, 12: 1063
37 Okazaki K, Kagawa M, Conrad H. Additional results on the electroplastic effect in metals[J]. Scr. Metall., 1979, 13: 277
38 Xiang S Q, Zhang X F. Dislocation structure evolution under electroplastic effect[J]. Mater. Sci. Eng., 2019, A761: 138026
39 Bhattacharyya J J, Agnew S R, Muralidharan G. Texture enhancement during grain growth of magnesium alloy AZ31B[J]. Acta Mater., 2015, 86: 80
[1] 冯小铮, 王卫国, Gregory S. Rohrer, 陈松, 洪丽华, 林燕, 王宗谱, 周邦新. 晶粒长大对高纯Al {111}/{111}近奇异晶界的影响[J]. 金属学报, 2024, 60(1): 80-94.
[2] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[3] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[4] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
[5] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[6] 周德强, 刘雄军, 吴渊, 王辉, 吕昭平. 新型奥氏体耐热不锈钢再结晶行为及其对力学性能的影响[J]. 金属学报, 2014, 50(10): 1217-1223.
[7] 张金玲,冯芝勇,胡兰青,王社斌,许并社. 不同La含量AZ91合金的时效硬化行为[J]. 金属学报, 2012, 48(5): 607-614.
[8] 张转转 武传松 高进强 . TCS不锈钢复合热源焊接热影响区晶粒长大的预测[J]. 金属学报, 2012, 48(2): 199-204.
[9] 周广钊 王永欣 陈铮. 相场法模拟不同形状的硬质颗粒对两相晶粒长大的影响[J]. 金属学报, 2012, 48(2): 227-234.
[10] 王社斌 祁小叶 张金玲 刘璐 许并社. 时效处理和La含量对AZ91合金组织和力学性能的影响[J]. 金属学报, 2011, 47(6): 743-750.
[11] 付立铭 单爱党 王巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响[J]. 金属学报, 2010, 46(7): 832-837.
[12] 陈礼清 赵阳 徐香秋 刘相华. 一种低碳钒微合金钢的动态再结晶与析出行为[J]. 金属学报, 2010, 46(10): 1215-1222.
[13] 韩利战 陈睿恺 顾剑锋 潘健生. X12CrMoWVNbN10-1-1铁素体耐热钢奥氏体晶粒长大行为的研究[J]. 金属学报, 2009, 45(12): 1446-1450.
[14] 岳景朝 王浩 刘国权 栾军华. 一个基于平均N面体模型的晶粒长大速率方程[J]. 金属学报, 2009, 45(12): 1421-1424.
[15] 高英俊 张海林 金星 黄创高 罗志荣. 相场方法研究硬质颗粒钉扎的两相晶粒长大过程[J]. 金属学报, 2009, 45(10): 1190-1198.