Please wait a minute...
金属学报  2025, Vol. 61 Issue (3): 397-419    DOI: 10.11900/0412.1961.2024.00314
  综述 本期目录 | 过刊浏览 |
镁合金电弧熔丝增材制造技术研究现状与展望
黄科(), 李新志, 方学伟, 卢秉恒
西安交通大学 机械工程学院 西安 710049
State-of-the-Art Progress and Outlook in Wire Arc Additive Manufacturing of Magnesium Alloys
HUANG Ke(), LI Xinzhi, FANG Xuewei, LU Bingheng
School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.
Ke HUANG, Xinzhi LI, Xuewei FANG, Bingheng LU. State-of-the-Art Progress and Outlook in Wire Arc Additive Manufacturing of Magnesium Alloys[J]. Acta Metall Sin, 2025, 61(3): 397-419.

全文: PDF(34416 KB)   HTML
摘要: 

电弧熔丝增材制造(WAAM)作为一种新兴的增材制造工艺,具有沉积效率高、成本低等优势,有望实现大型轻质镁合金复杂构件的一体化成形和规模化生产。然而,由于镁合金的低熔/沸点和高导热率等材料特性,导致WAAM构件中存在非均匀组织、冶金缺陷及应力变形,大幅降低了材料的可靠性和服役寿命,难以满足高端装备领域的使役要求,是亟需攻克的瓶颈问题。本文首先阐述了WAAM成形镁合金的工艺优势和技术挑战,然后从主流工艺、成形质量、冶金缺陷、组织特征和综合性能5个方面综述了近年来国内外关于镁合金WAAM成形方面的研究,并总结了基于液态熔池和固态层间的在线调控策略以及基于热处理和表面强化的整体后处理方案,为大型复杂镁合金构件的高质量成形提供相应的理论基础和指导策略。最后,从材料成分设计、组织缺陷在线调控、后处理形性协同调控以及构件性能评价等方面对WAAM镁合金的未来发展趋势与研究方向进行了总结与展望。

关键词 电弧熔丝增材制造镁合金冶金缺陷微观组织综合性能调控策略    
Abstract

Wire arc additive manufacturing (WAAM) is a promising additive manufacturing process known for its high deposition efficiency and cost effectiveness, making it well-suited for the large-scale production of complex, lightweight magnesium alloy components. Despite these advantages, magnesium alloys present challenges owing to their low melting and boiling points and high thermal conductivity, which result in nonuniform microstructures, metallurgical defects, and residual stresses in WAAM-manufactured components. These issues notably reduce the reliability and service life of the components, making it difficult to meet the demanding requirements of high-end equipment applications. It presents a critical challenge that must be addressed. This review outlines the advantages and technical challenges of WAAM, providing a comprehensive overview of recent domestic and international research in five key areas: process types, forming quality, metallurgical defects, microstructure characteristics, and overall performance. In addition, the present study summarizes in situ modulation strategies besed on the liquid melt pool and solid interlayer, as well as heat treatment and surface strengthening methods, providing a theoretical framework for improving the quality of large and complex magnesium alloy components. Finally, this review discusses future trends and research directions in WAAM for magnesium alloys, with a focus on composition design, in situ modulation, post-treatment processes, and performance evaluation.

Key wordswire-arc additive manufacturing    magnesium alloy    metallurgical defect    microstructure    comprehensive performance    modulation strategy
收稿日期: 2024-09-06     
ZTFLH:  TG669  
基金资助:国家自然科学基金项目(523B2049);国家自然科学基金项目(52275374);国家自然科学基金项目(52205414)
通讯作者: 黄 科,ke.huang@xjtu.edu.cn,主要从事金属增材制造(3D打印)、激光冲击强化等方面的研究
Corresponding author: HUANG Ke, professor, Tel: 13519183706, E-mail: ke.huang@xjtu.edu.cn
作者简介: 黄 科,男,1983年生,教授,博士
图1  电弧熔丝增材制造(WAAM)成形设备[19]及大尺寸镁合金构件[3]
图2  WAAM成形镁合金的冶金缺陷、非均匀组织和力学性能[21~24,26]
图3  WAAM技术的原理图[27]
图4  打印参数对沉积单道形貌的影响[28]
图5  4种电弧模式下单道多层WE43镁合金薄墙件的形貌[19]
图6  WAAM制备GW63K镁合金薄壁件的缺陷分布状态[21]
图7  WAAM制备AZ31镁合金多道多层块体的缺陷分布状态[29]
图8  WAAM制备WE43镁合金墙状样品的氧化夹杂分布状态[37]
图9  AZ31镁合金在热轧态、钨极气体保护焊(GTAW)制备态和铸造态的晶粒尺寸和取向分布[35,38]
图10  GW系Mg-RE合金在铸造态、WAAM和激光定向能量沉积(LDED)制备下的析出相[26]
图11  WAAM制备不同镁合金系的晶粒尺寸和取向分布[24,26]
图12  本征热处理引起的WAAM制备WE43镁合金中的析出相演变[37]
AlloyDeposition processStateTensile direction

YS

MPa

UTS

MPa

EL

%

Ref.
Mg-3.12Al-0.84Zn-0.2MnGTAWADH10922320.3[35]
V9519113.8
AZ31GTAWADH5216211.8[42]
V13220117.2
Mg-2.98Al-0.93Zn-0.38MnGTAWADH9523921[29]
Mg-2.54Al-0.67Zn-0.44MnCMTADH8522628.3[31]
V12621117.2
Mg-2.54Al-0.67Zn-0.44MnCMTADH711527.5[30]
V13221110.6
Mg-2.5Al-0.82Zn-0.35MnCMTADH12022423.5[43]
V11321720.8
Mg-6.02Al-0.15Mn-0.88ZnGTAWAD-10526016[36]
Mg-7.6Al-0.25Mn-0.36Zn-0.15Ca-0.2YGTAWADH-28815[44]
V-22413
T6H-29216
V-28314
Mg-8.5Al-0.45Zn-0.03Mn-0.15Ca-0.2YGTAWADH14630815[32,45]
V11923712
AZ91DGTAWADH11324411.9[40]
V10824411.5
Mg-8.99Al-0.65Zn-0.26MnCMTADH-25017.5[33]
V-24516.3
Mg-4.26Gd-2.06Y-1.18Zn-0.36ZrCMTADH12322412.7[23]
V12122411.4
Mg-4.26Gd-2.06Y-1.18Zn-0.36ZrCMTT4H11723417.7[23]
V11422916.0
T6H15728817.1
V15728516.2
Mg-6.3Gd-2.6Y-0.4ZrGTAWADH1502328.3[21]
V1512378.9
T6V2183455.2
Mg-5.9Gd-2.8Y-0.7ZrCMTADH16226312.2[39]
V15925812.0
T4-15325717.9
T5H2273505.5
V2202385.7
T6-1993206.7
Mg-10.22Gd-2.14Y-0.43ZrCMTADH1492478.1[26]
V1512406.1
T4H12923814.6
V13224114.4
T6H2393714.0
V2433673.9
GWZ1031KGTAWADH1542718.7[25]
V1502473.3
T4H17028716.5
V16828512.7
T6H2153312.1
V2143372.7
Mg-4.08Y-2.11Nd-1.07Gd-0.54ZrGTAWADH1872575.2[37]
V1992718.1
Mg-3.82Y-2.46Nd-0.56ZrCMTADH15323310.4[41]
V14621110.3
表1  最优工艺参数下WAAM沉积态和热处理态镁合金的室温拉伸性能[21,23,25,26,29~33,35~37,39~45]
图13  采用WAAM工艺和传统工艺制备的AZ31镁合金腐蚀性能的比较[35,46](a) cast and CMT process[46] (b) hot roll and GTAW process[35]
图14  采用WAAM工艺和传统铸造工艺制备的AZ31镁合金阻尼性能的比较[38]
图15  其他金属材料在WAAM过程中的原位调控方案[49~51]
图16  超高频脉冲电弧的电流信号[52]
图17  超声振动辅助WAAM的设备[54]
图18  层间停留时间对热历史的影响[55]
图19  层间强化辅助WAAM的设备[58~60]
图20  WAAM制备的GW系镁合金在热处理过程中的微观组织演变示意图[26]
图21  WAAM制备的AZ31镁合金经过激光冲击处理后沿深度方向分布的梯度微观组织[48]
1 Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020 [J]. J. Magnes. Alloy., 2021, 9: 705
doi: 10.1016/j.jma.2021.04.001
2 Xu T C, Yang Y, Peng X D, et al. Overview of advancement and development trend on magnesium alloy [J]. J. Magnes. Alloy., 2019, 7: 536
doi: 10.1016/j.jma.2019.08.001
3 Sui S, Guo S, Ma D, et al. Additive manufacturing of magnesium and its alloys: Process-formability-microstructure-performance relationship and underlying mechanism [J]. Int. J. Extrem. Manuf., 2023, 5: 042009
4 Gu D D, Shi X Y, Poprawe R, et al. Material-structure-performance integrated laser-metal additive manufacturing [J]. Science, 2021, 372: eabg1487
5 Tang W N, Mo N, Hou J. Research progress of additively manufactured magnesium alloys: A review [J]. Acta Metall. Sin., 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
5 唐伟能, 莫 宁, 侯 娟. 增材制造镁合金技术现状与研究进展 [J]. 金属学报, 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
6 Peng L M, Deng Q C, Wu Y J, et al. Additive manufacturing of magnesium alloys by selective laser melting technology: A review [J]. Acta Metall. Sin., 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
6 彭立明, 邓庆琛, 吴玉娟 等. 镁合金选区激光熔化增材制造技术研究现状与展望 [J]. 金属学报, 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
7 Li X Z, Fang X W, Chang T X, et al. Research progress in precise fabrication of lightweight magnesium alloys by selective laser melting [J]. J. Netshape Form. Eng., 2022, 14(4): 78
7 李新志, 方学伟, 常天行 等. 选区激光熔化精密成形轻质镁合金的研究进展 [J]. 精密成形工程, 2022, 14(4): 78
8 Li K, Ji C, Bai S W, et al. Selective laser melting of magnesium alloys: Necessity, formability, performance, optimization and applications [J]. J. Mater. Sci. Technol., 2023, 154: 65
doi: 10.1016/j.jmst.2022.12.053
9 Li X Z, Fang X W, Jiang X, et al. Additively manufactured high-performance AZ91D magnesium alloys with excellent strength and ductility via nanoparticles reinforcement [J]. Addit. Manuf., 2023, 69: 103550
10 Li X Z, Fang X W, Wang S P, et al. Selective laser melted AZ91D magnesium alloy with superior balance of strength and ductility [J]. J. Magnes. Alloy., 2023, 11: 4644
11 Zheng D D, Li Z, Jiang Y L, et al. Effect of multiple thermal cycles on the microstructure evolution of GA151K alloy fabricated by laser-directed energy deposition [J]. Addit. Manuf., 2022, 57: 102957
12 Jiang Y L, Tang H B, Li Z, et al. Additive manufactured Mg-Gd-Y-Zr alloys: Effects of Gd content on microstructure evolution and mechanical properties [J]. Addit. Manuf., 2022, 59: 103136
13 Yi H, Wang Q, Cao H J. Wire-arc directed energy deposition of magnesium alloys: Microstructure, properties and quality optimization strategies [J]. J. Mater. Res. Technol., 2022, 20: 627
14 Wang Z, Fu B G, Wang Y F, et al. Research progress of additive manufacturing of magnesium alloys [J]. Chin. J. Nonferrous Met., 2021, 31: 3093
14 王 哲, 付彬国, 王玉凤 等. 增材制造镁合金的研究进展 [J]. 中国有色金属学报, 2021, 31: 3093
15 Zhao Z X, Yan P F, Wu J, et al. Research progress of additive manufacturing magnesium alloy [J]. Chin. J. Nonferrous Met., 2023, 33: 2753
15 赵致先, 闫鹏飞, 吴 捷 等. 增材制造镁合金的研究现状与展望 [J]. 中国有色金属学报, 2023, 33: 2753
16 Zhang C H, Li Z, Zhang J K, et al. Additive manufacturing of magnesium matrix composites: Comprehensive review of recent progress and research perspectives [J]. J. Magnes. Alloy., 2023, 11: 425
17 Zeng Z R, Salehi M, Kopp A, et al. Recent progress and perspectives in additive manufacturing of magnesium alloys [J]. J. Magnes. Alloy., 2022, 10: 1511
18 Ansari N, Alabtah F G, Albakri M I, et al. Post processing of additive manufactured Mg alloys: Current status, challenges, and opportunities [J]. J. Magnes. Alloy., 2024, 12: 1283
19 Chen F K, Cai X Y, Dong B L, et al. Effect of process modes on microstructure and mechanical properties of CMT wire arc additive manufactured WE43 magnesium alloy [J]. J. Mater. Res. Technol., 2023, 27: 2089
20 Cao Q H, Qi B J, Zeng C Y, et al. Achieving equiaxed microstructure and isotropic mechanical properties of additively manufactured AZ31 magnesium alloy via ultrasonic frequency pulsed arc [J]. J. Alloys Compd., 2022, 909: 164742
21 Cao Q H, Zeng C Y, Qi B J, et al. Excellent isotropic mechanical properties of directed energy deposited Mg-Gd-Y-Zr alloys via establishing homogeneous equiaxed grains embedded with dispersed nano-precipitation [J]. Addit. Manuf., 2023, 67: 103498
22 Li X Z, Fang X W, Zhang M G, et al. Enhanced strength-ductility synergy of magnesium alloy fabricated by ultrasound assisted directed energy deposition [J]. J. Mater. Sci. Technol., 2024, 178: 247
doi: 10.1016/j.jmst.2023.09.021
23 Li X Z, Fang X W, Fang D Q, et al. On the excellent strength-ductility synergy of wire-arc directed energy deposited Mg-Gd-Y-Zn-Zr alloy via manipulating precipitates [J]. Addit. Manuf., 2023, 77: 103794
24 Li X Z, Zhang M G, Fang X W, et al. Improved strength-ductility synergy of directed energy deposited AZ31 magnesium alloy with cryogenic cooling mode [J]. Virtual Phys. Prototyping, 2023, 18: e2170252
25 Cao Q H, Zeng C Y, Cai X Y, et al. High-strength Mg-10Gd-3Y-1Zn-0.5Zr alloy fabricated by wire-arc directed energy deposition: Phase transformation behavior and mechanical properties [J]. Addit. Manuf., 2023, 76: 103789
26 Li X Z, Fang X W, Zhang Z Y, et al. Revealing precipitation behavior and mechanical response of wire-arc directed energy deposited Mg-Gd-Y-Zr alloy by tailoring aging procedures [J]. Int. J. Extrem. Manuf., 2024, 6: 045001
27 Yi H, Yang L, Jia L, et al. Porosity in wire-arc directed energy deposition of aluminum alloys: Formation mechanisms, influencing factors and inhibition strategies [J]. Addit. Manuf., 2024, 84: 104108
28 Han S, Zielewski M, Martinez Holguin D, et al. Optimization of AZ91D process and corrosion resistance using wire arc additive manufacturing [J]. Appl. Sci., 2018, 8: 1306
29 Takagi H, Sasahara H, Abe T, et al. Material-property evaluation of magnesium alloys fabricated using wire-and-arc-based additive manufacturing [J]. Addit. Manuf., 2018, 24: 498
30 Yang X, Liu J R, Wang Z N, et al. Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process [J]. Mater. Sci. Eng., 2020, A774: 138742
31 Wang P, Zhang H Z, Zhu H, et al. Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source: Processing, microstructure, and mechanical behavior [J]. J. Mater. Process. Technol., 2021, 288: 116895
32 Guo Y Y, Quan G F, Jiang Y L, et al. Formability, microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding [J]. J. Magnes. Alloy., 2021, 9: 192
33 Bi J, Shen J, Hu S, et al. Microstructure and mechanical properties of AZ91 Mg alloy fabricated by cold metal transfer additive manufacturing [J]. Mater. Lett., 2020, 276: 128185
34 Zhang H, Hu S S, Wang Z J, et al. The effect of welding speed on microstructures of cold metal transfer deposited AZ31 magnesium alloy clad [J]. Mater. Des., 2015, 86: 894
35 Fang X W, Yang J N, Wang S P, et al. additive manufacturing of high performance AZ31 magnesium alloy with full equiaxed grains: Microstructure, mechanical property, and electromechanical corrosion performance [J]. J. Mater. Process. Technol., 2022, 300: 117430
36 Ying T, Zhao Z X, Yan P F, et al. Effect of fabrication parameters on the microstructure and mechanical properties of wire arc additive manufactured AZ61 alloy [J]. Mater. Lett., 2022, 307: 131014
37 Tong X, Wu G H, Easton M A, et al. Microstructural evolution and strengthening mechanism of Mg-Y-RE-Zr alloy fabricated by quasi-directed energy deposition [J]. Addit. Manuf., 2023, 67: 103487
38 Wang Z H, Wang J F, Lin X, et al. Solidification microstructure evolution and its correlations with mechanical properties and damping capacities of Mg-Al-based alloy fabricated using wire and arc additive manufacturing [J]. J. Mater. Sci. Technol., 2023, 144: 28
doi: 10.1016/j.jmst.2022.10.019
39 Ma D, Xu C J, Sui S, et al. Microstructure evolution and mechanical properties of wire arc additively manufactured Mg-Gd-Y-Zr alloy by post heat treatments [J]. Virtual Phys. Prototyping, 2023, 18: e2225492
40 Cai X Y, Chen F K, Dong B L, et al. Microstructure and mechanical properties of GTA-based wire arc additive manufactured AZ91D magnesium alloy [J]. J. Magnes. Alloy., 2022, 12: 3180
41 Ma D, Xu C J, Qi Y S, et al. Achieving fully equiaxed grain microstructure and isotropic mechanical properties in wire arc additive-manufactured Mg-Y-Nd-Zr alloys [J]. J. Alloys Compd., 2023, 962: 171041
42 Wang Z H, Wang J F, Lin X, et al. Solidification texture dependence of the anisotropy of mechanical properties and damping capacities of an AZ31 Mg-based alloy fabricated via wire-arc additive manufacturing [J]. J. Mater. Res. Technol., 2023, 25: 2589
43 Manjhi S K, Sekar P, Bontha S, et al. Effect of equiaxed grains and secondary phase particles on mechanical properties and corrosion behaviour of CMT-based wire arc additive manufactured AZ31 Mg alloy [J]. CIRP J. Manuf. Sci. Technol., 2023, 46: 48
44 Guo Y Y, Quan G F, Celikin M, et al. Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing [J]. J. Magnes. Alloy., 2022, 10: 1930
45 Guo Y Y, Pan H H, Ren L B, et al. Microstructure and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy [J]. Mater. Lett., 2019, 247: 4
46 Li J W, Qiu Y M, Yang J J, et al. Effect of grain refinement induced by wire and arc additive manufacture (WAAM) on the corrosion behaviors of AZ31 magnesium alloy in NaCl solution [J]. J. Magnes. Alloy., 2023, 11: 217
47 Zhang Z, Wang L Q, Zhang R Z, et al. Effect of solution annealing on microstructures and corrosion behavior of wire and arc additive manufactured AZ91 magnesium alloy in sodium chloride solution [J]. J. Mater. Res. Technol., 2022, 18: 416
48 Li X Z, Fang X W, Zhang M G, et al. Gradient microstructure and prominent performance of wire-arc directed energy deposited magnesium alloy via laser shock peening [J]. Int. J. Mach. Tools Manuf., 2023, 188: 104029
49 Qiu Z J, Dong B S, Wu B T, et al. Tailoring the surface finish, dendritic microstructure and mechanical properties of wire arc additively manufactured Hastelloy C276 alloy by magnetic arc oscillation [J]. Addit. Manuf., 2021, 48: 102397
50 Gong M C, Meng Y F, Zhang S, et al. Laser-arc hybrid additive manufacturing of stainless steel with beam oscillation [J]. Addit. Manuf., 2020, 33: 101180
51 Martina F, Roy M J, Szost B A, et al. Residual stress of as-deposited and rolled wire + arc additive manufacturing Ti-6Al-4V components [J]. Mater. Sci. Technol., 2016, 32: 1439
52 Cong B Q, Cai X Y, Qi Z W, et al. The effects of ultrasonic frequency pulsed arc on wire + arc additively manufactured high strength aluminum alloys [J]. Addit. Manuf., 2022, 51: 102617
53 Guo J, Zhou Y, Liu C M, et al. Wire Arc additive manufacturing of AZ31 magnesium alloy: Grain refinement by adjusting pulse frequency [J]. Materials, 2016, 9: 823
54 Yi H, Wang Q, Zhang W J, et al. Wire-arc directed energy deposited Mg-Al alloy assisted by ultrasonic vibration: Improving properties via controlling grain structures [J]. J. Mater. Process. Technol., 2023, 321: 118134
55 Ma D, Xu C J, Sui S, et al. Enhanced strength-ductility synergy in a wire and arc additively manufactured Mg alloy via tuning interlayer dwell time [J]. J. Magnes. Alloy., 2023, 11: 4696
56 Colegrove P A, Coules H E, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling [J]. J. Mater. Process. Technol., 2013, 213: 1782
57 Hai-Ou Z, Wang R, Liang L Y, et al. HDMR technology for the aircraft metal part [J]. Rapid Prototyping J., 2016, 22: 857
58 Fang X W, Yang J N, Jiang X, et al. Wire-arc directed energy deposited high-performance AZ31 magnesium alloy via a novel interlayer hammering treatment [J]. Mater. Sci. Eng., 2024, A889: 145864
59 Zhao X H, Ren B Q, Zhang Y W, et al. Microstructural evolution and strengthening mechanisms of CMT directed energy deposition-arc with interlayer ultrasonic impact treatment manufactured AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2023, A879: 145267
60 Wei J X, He C S, Qie M F, et al. Achieving high performance of wire arc additive manufactured Mg-Y-Nd alloy assisted by interlayer friction stir processing [J]. J. Mater. Process. Technol., 2023, 311: 117809
61 Graf G, Spoerk-Erdely P, Maawad E, et al. Effect of wire-arc directed energy deposition on the microstructural formation and age-hardening response of the Mg-9Al-1Zn (AZ91) alloy [J]. J. Magnes. Alloy., 2023, 11: 1944
62 Chen Y F, Zhang X C, Ding D H, et al. Integration of interlayer surface enhancement technologies into metal additive manufacturing: A review [J]. J. Mater. Sci. Technol., 2023, 165: 94
doi: 10.1016/j.jmst.2023.03.064
[1] 王慧远, 孟昭元, 贾海龙, 徐新宇, 花珍铭. 新型低合金含量烘烤硬化镁合金研究进展及展望[J]. 金属学报, 2025, 61(3): 372-382.
[2] 曾小勤, 于铭迪, 王静雅. 镁合金的多系滑移与塑性调控[J]. 金属学报, 2025, 61(3): 361-371.
[3] 蒋斌, 张昂, 宋江凤, 黎田, 游国强, 郑江, 潘复生. 镁合金一体化压铸缺陷控制[J]. 金属学报, 2025, 61(3): 383-396.
[4] 周雯慧, 熊锦涛, 黄思程, 王鹏昊, 刘勇. AZ31镁合金双峰组织形成机制及其变形行为[J]. 金属学报, 2025, 61(3): 488-498.
[5] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[6] 付辉, 孙勇, 邹国栋, 张帆, 杨许生, 张涛, 彭秋明. 高性能超高压镁合金研究进展[J]. 金属学报, 2025, 61(3): 475-487.
[7] 文恬恬, 岳继礼, 熊方宇, 袁媛, 黄光胜, 王敬丰, 潘复生. 可充电镁电池负极材料及界面化学的研究进展[J]. 金属学报, 2025, 61(3): 437-454.
[8] 郭星星, 帅美荣, 楚志兵, 李玉贵, 谢广明. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J]. 金属学报, 2025, 61(2): 336-348.
[9] 韩启飞, 狄兴隆, 郭跃岭, 叶水俊, 郑元翾, 刘长猛. 电弧熔丝增材制造Mg/Mg双金属的组织与力学性能[J]. 金属学报, 2025, 61(2): 211-225.
[10] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[11] 王旗涛, 李艳芬, 张家榕, 李尧志, 付海阳, 李新乐, 严伟, 单以银. 聚变增殖包层用低活化9Cr-ODS钢的室温低周疲劳行为[J]. 金属学报, 2025, 61(2): 323-335.
[12] 夏兴川, 张恩宽, 丁俭, 王玉江, 刘永长. 激光熔覆难熔高熵合金涂层研究进展[J]. 金属学报, 2025, 61(1): 59-76.
[13] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[14] 李俊杰, 李盼悦, 黄立清, 郭杰, 吴京洋, 樊凯, 王锦程. 真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展[J]. 金属学报, 2025, 61(1): 12-28.
[15] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.