|
|
后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响 |
赵亚楠, 郭乾应, 刘晨曦, 马宗青( ), 刘永长 |
天津大学 材料科学与工程学院 天津 300072 |
|
Effects of Subsequent Heat Treatment on Microstructure and High-Temperature Mechanical Properties of Laser 3D Printed GH4099 Alloy |
ZHAO Yanan, GUO Qianying, LIU Chenxi, MA Zongqing( ), LIU Yongchang |
School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China |
引用本文:
赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
Yanan ZHAO,
Qianying GUO,
Chenxi LIU,
Zongqing MA,
Yongchang LIU.
Effects of Subsequent Heat Treatment on Microstructure and High-Temperature Mechanical Properties of Laser 3D Printed GH4099 Alloy[J]. Acta Metall Sin, 2025, 61(1): 165-176.
1 |
Yang B, Shang Z, Ding J, et al. Investigation of strengthening mechanisms in an additively manufactured Haynes 230 alloy[J]. Acta Mater., 2022, 222: 117404
|
2 |
Sun S S, Teng Q, Xie Y, et al. Two-step heat treatment for laser powder bed fusion of a nickel-based superalloy with simultaneously enhanced tensile strength and ductility[J]. Addit. Manuf., 2021, 46: 102168
|
3 |
Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718[J]. Addit. Manuf., 2019, 30: 100877
|
4 |
Song B, Zhang J L, Zhang Y J, et al. Research progress of materials design for metal laser additive manufacturing[J]. Acta Metall. Sin., 2023, 59: 1
doi: 10.11900/0412.1961.2022.00026
|
4 |
宋 波, 张金良, 章媛洁 等. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59: 1
|
5 |
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549: 365
|
6 |
Yang X, Wang B, Gu W P, et al. Application and research status of numerical simulation of metal laser 3D printing process[J]. J. Mater. Eng., 2021, 49(4): 52
doi: 10.11868/j.issn.1001-4381.2020.000235
|
6 |
杨 鑫, 王 犇, 谷文萍 等. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程, 2021, 49(4): 52
|
7 |
Sun Z J, Tan X P, Tor S B, et al. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting[J]. npg Asia Mater., 2018, 10: 127
|
8 |
Chen Y, Guo Y B, Xu M J, et al. Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and Gaussian distribution laser[J]. Mater. Sci. Eng., 2019, A754: 339
|
9 |
Nadammal N, Mishurova T, Fritsch T, et al. Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing[J]. Addit. Manuf., 2021, 38: 101792
|
10 |
Liu L F, Ding Q Q, Zhong Y, et al. Dislocation network in additive manufactured steel breaks strength-ductility trade-off[J]. Mater. Today, 2018, 21: 354
|
11 |
Voisin T, Forien J B, Perron A, et al. New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion[J]. Acta Mater., 2021, 203: 116476
|
12 |
Zhao Y N, Guo Q Y, Ma Z Q, et al. Comparative study on the microstructure evolution of selective laser melted and wrought IN718 superalloy during subsequent heat treatment process and its effect on mechanical properties[J]. Mater. Sci. Eng., 2020, A791: 139735
|
13 |
Kok Y, Tan X P, Wang P, et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review[J]. Mater. Des., 2018, 139: 565
|
14 |
Zhao Y H, Li K, Gargani M, et al. A comparative analysis of Inconel 718 made by additive manufacturing and suction casting: Microstructure evolution in homogenization[J]. Addit. Manuf., 2020, 36: 101404
|
15 |
Wei B, Liu Z M, Nong B Z, et al. Microstructure, cracking behavior and mechanical properties of René 104 superalloy fabricated by selective laser melting[J]. J. Alloys Compd., 2021, 867: 158377
|
16 |
Tang Y T, Panwisawas C, Ghoussoub J N, et al. Alloys-by-design: Application to new superalloys for additive manufacturing[J]. Acta Mater., 2021, 202: 417
|
17 |
Cloots M, Uggowitzer P J, Wegener K. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles[J]. Mater. Des., 2016, 89: 770
|
18 |
Chang K, Ma L, Li P T, et al. Effect of heat treatment on microstructure and mechanical properties of GH4099 superalloy fabricated by selective laser melting[J]. J. Alloys Compd., 2023, 934: 167813
|
19 |
Harte A, Atkinson M, Smith A, et al. The effect of solid solution and gamma prime on the deformation modes in Ni-based superalloys[J]. Acta Mater., 2020, 194: 257
|
20 |
Li J, Ding R, Guo Q Y, et al. Effect of solution cooling rate on microstructure evolution and mechanical properties of Ni-based superalloy ATI 718Plus[J]. Mater. Sci. Eng., 2021, A812: 141113
|
21 |
Zhang P, Yuan Y, Yin H, et al. Tensile properties and deformation mechanisms of Haynes 282 at various temperatures[J]. Metall. Mater. Trans., 2018, 49A: 1571
|
22 |
Hu R, Bai G H, Li J S, et al. Precipitation behavior of grain boundary M23C6 and its effect on tensile properties of Ni-Cr-W based superalloy[J]. Mater. Sci. Eng., 2012, A548: 83
|
23 |
Dong R F, Li J S, Zhang T B, et al. Elements segregation and phase precipitation behavior at grain boundary in a Ni-Cr-W based superalloy[J]. Mater. Charact., 2016, 122: 189
|
24 |
Tang Y T, Panwisawas C, Jenkins B M, et al. Multi-length-scale study on the heat treatment response to supersaturated nickel-based superalloys: Precipitation reactions and incipient recrystallisation[J]. Addit. Manuf., 2023, 62: 103389
|
25 |
Son K T, Phan T Q, Levine L E, et al. The creep and fracture properties of additively manufactured inconel 625[J]. Materialia, 2021, 15: 101021
|
26 |
Inaekyan K, Kreitcberg A, Turenne S, et al. Microstructure and mechanical properties of laser powder bed-fused IN625 alloy[J]. Mater. Sci. Eng., 2019, A768: 138481
|
27 |
Li Y, Kan W B, Zhang Y M, et al. Microstructure, mechanical properties and strengthening mechanisms of IN738LC alloy produced by electron beam selective melting[J]. Addit. Manuf., 2021, 47: 102371
|
28 |
Zhang H B, Zhang K F, Jiang S S, et al. Dynamic recrystallization behavior of a γ′-hardened nickel-based superalloy during hot deformation[J]. J. Alloys Compd., 2015, 623: 374
|
29 |
Gao Y B, Ding Y T, Chen J J, et al. Effect of twin boundaries on the microstructure and mechanical properties of Inconel 625 alloy[J]. Mater. Sci. Eng., 2019, A767: 1383611
|
30 |
Lu Y J, Zhao W, Yang C, et al. Improving mechanical properties of selective laser melted Co29Cr9W3Cu alloy by eliminating mesh-like random high-angle grain boundary[J]. Mater. Sci. Eng., 2020, A793: 1
|
31 |
Gao S B, Hu Z H, Duchamp M, et al. Recrystallization-based grain boundary engineering of 316L stainless steel produced via selective laser melting[J]. Acta Mater., 2020, 200: 366
|
32 |
Zhang L, Liu H S, He X B, et al. Thermal evolution behavior of carbides and γ′ precipitates in FGH96 superalloy powder[J]. Mater. Charact., 2012, 67: 52
|
33 |
Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021
pmid: 29115290
|
34 |
Bai G H, Hu R, Li J S, et al. Secondary M23C6 precipitation behavior in Ni-Cr-W based superalloy[J]. Rare Met. Mater. Eng., 2011, 40: 1737
|
34 |
柏广海, 胡 锐, 李金山 等. Ni-Cr-W基高温合金二次M23C6析出行为[J]. 稀有金属材料与工程, 2011, 40: 1737
|
35 |
Tan Y, You X G, You Q F, et al. Microstructure and deformation behavior of nickel based superalloy Inconel 740 prepared by electron beam smelting[J]. Mater. Charact., 2016, 114: 267
|
36 |
Wang Z Y, Muránsky O, Zhu H L, et al. On the kinetics of gamma prime (γ') precipitation and its strengthening mechanism in alloy 617 during a long-term thermal aging[J]. Materialia, 2020, 11: 100682
|
37 |
Mei Y P, Liu Y C, Liu C X, et al. Effects of cold rolling on the precipitation kinetics and the morphology evolution of intermediate phases in Inconel 718 alloy[J]. J. Alloys Compd., 2015, 649: 949
|
38 |
Qin H L, Bi Z N, Yu H Y, et al. Influence of stress on γ″ precipitation behavior in Inconel 718 during aging[J]. J. Alloys Compd., 2018, 740: 997
|
39 |
Bober D B, Lind J, Mulay R P, et al. The formation and characterization of large twin related domains[J]. Acta Mater., 2017, 129: 500
|
40 |
Kumar N. An exploration of microstructural in-homogeneity in the 6082 Al alloy processed through room temperature multi-axial forging[J]. Mater. Charact., 2021, 176: 111134
|
41 |
Chinese Society of Metals High Temperature Materials Branch. China Superalloys Handbook[M]. Beijing: China Quality Inspection Press, 2012: 599
|
41 |
中国金属学会高温材料分会. 中国高温合金手册[M]. 北京: 中国质检出版社, 2012: 599
|
42 |
Gallmeyer T G, Moorthy S, Kappes B B, et al. Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718[J]. Addit. Manuf., 2020, 31: 100977
|
43 |
Zhang Z H, Han Q Q, Liu Z Y, et al. Influence of the TiB2 content on the processability, microstructure and high-temperature tensile performance of a Ni-based superalloy by laser powder bed fusion[J]. J. Alloys Compd., 2022, 908: 164656
|
44 |
Du B N, Hu Z Y, Sheng L Y, et al. Tensile, creep behavior and microstructure evolution of an as-cast Ni-based K417G polycrystalline superalloy[J]. J. Mater. Sci. Technol., 2018, 34: 1805
doi: 10.1016/j.jmst.2018.02.007
|
45 |
de Oliveira M M, Couto A A, Almeida G F C, et al. Mechanical behavior of Inconel 625 at elevated temperatures[J]. Metals, 2019, 9: 301
|
46 |
Hu Y L, Li Y L, Zhang S Y, et al. Effect of solution temperature on static recrystallization and ductility of Inconel 625 superalloy fabricated by directed energy deposition[J]. Mater. Sci. Eng., 2020, A772: 138711
|
47 |
Hu Y L, Lin X, Zhang S Y, et al. Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming[J]. J. Alloys Compd., 2018, 767: 330
|
48 |
McCarley J, Helmink R, Goetz R, et al. Grain boundary engineering of a low stacking fault energy Ni-based Superalloy[J]. Metall. Mater. Trans., 2017, 48A: 1666
|
49 |
Hu Z P, Guan K, Qian Z, et al. Simultaneous enhancement of strength and ductility in selective laser melting manufactured 316L alloy by employing Y2O3 coated spherical powder as precursor[J]. J. Alloys Compd., 2022, 899: 163262
|
50 |
Németh A A N, Crudden D J, Armstrong D E J, et al. Environmentally-assisted grain boundary attack as a mechanism of embrittlement in a nickel-based superalloy[J]. Acta Mater., 2017, 126: 361
|
51 |
Zheng L, Schmitz G, Meng Y, et al. Mechanism of intermediate temperature embrittlement of Ni and Ni-based superalloys[J]. Crit. Rev. Solid State Mater. Sci., 2012, 37: 181
|
52 |
Bahl S, Plotkowski A, Sisco K, et al. Elevated temperature ductility dip in an additively manufactured Al-Cu-Ce alloy[J]. Acta Mater., 2021, 220: 117285
|
53 |
Lei Y C, Aoyagi K, Aota K, et al. Critical factor triggering grain boundary cracking in non-weldable superalloy Alloy713ELC fabricated with selective electron beam melting[J]. Acta Mater., 2021, 208: 116695
|
54 |
Hrutkay K, Kaoumi D. Tensile deformation behavior of a nickel based superalloy at different temperatures[J]. Mater. Sci. Eng., 2014, A599: 196
|
55 |
Shin K Y, Kim J H, Terner M, et al. Effects of heat treatment on the microstructure evolution and the high-temperature tensile properties of Haynes 282 superalloy[J]. Mater. Sci. Eng., 2019, A751: 311
|
56 |
Zhong Z H, Gu Y F, Yuan Y, et al. Tensile properties and deformation characteristics of a Ni-Fe-base superalloy for steam boiler applications[J]. Metall. Mater. Trans., 2013, 45A: 343
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|