Please wait a minute...
金属学报  2025, Vol. 61 Issue (1): 165-176    DOI: 10.11900/0412.1961.2024.00208
  研究论文 本期目录 | 过刊浏览 |
后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响
赵亚楠, 郭乾应, 刘晨曦, 马宗青(), 刘永长
天津大学 材料科学与工程学院 天津 300072
Effects of Subsequent Heat Treatment on Microstructure and High-Temperature Mechanical Properties of Laser 3D Printed GH4099 Alloy
ZHAO Yanan, GUO Qianying, LIU Chenxi, MA Zongqing(), LIU Yongchang
School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
引用本文:

赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
Yanan ZHAO, Qianying GUO, Chenxi LIU, Zongqing MA, Yongchang LIU. Effects of Subsequent Heat Treatment on Microstructure and High-Temperature Mechanical Properties of Laser 3D Printed GH4099 Alloy[J]. Acta Metall Sin, 2025, 61(1): 165-176.

全文: PDF(4746 KB)   HTML
摘要: 

激光粉末床熔融(LPBF) 3D打印技术具有跨维度多尺度成形的技术特点,同时表现出非平衡快速凝固的冶金特征,与传统制造工艺形成的微观组织存在明显差异。基于传统制造工艺发展而来的热处理工艺难以适用于LPBF制备的样品,因此,研究LPBF打印件专用的后续热处理制度对于其组织和性能调控具有重要的意义。本工作以LPBF制备的GH4099合金为研究对象,研究了后续热处理对3D打印高温合金非平衡微观组织和高温力学性能的影响。结果表明,固溶处理不仅影响打印组织的再结晶行为,而且也与碳化物和γ'相的析出行为密切相关,因而对GH4099合金的高温延伸率影响较大。LPBF制备GH4099合金中的多尺度异质结构使其组织热稳定性明显高于传统铸锻件,因此需要更高的固溶热处理温度以促进其完全再结晶。经1150 ℃固溶处理1.5 h后,GH4099打印件中柱状晶转变为等轴晶并形成大尺寸孪晶,同时晶界处M23C6碳化物的析出也受到抑制。在随后的时效热处理过程中,由于再结晶释放了3D打印晶粒内部储存的畸变能,使得基体中γ'相的析出受到了明显抑制。基于上述结果,通过优化热处理制度,GH4099合金打印件实现了高温强度和塑性的良好匹配。

关键词 激光粉末床熔融非平衡组织热处理γ'高温力学性能    
Abstract

The multi-dimensional, multi-scale forming characteristics of laser powder bed fusion (LPBF) 3D printing technology, combined with its complex non-equilibrium solidification process, result in multilayered microstructures that differ significantly from those produced by traditional manufacturing methods. However, it is challenging to apply existing heat treatment solutions, developed for conventional manufacturing processes, to LPBF. Therefore, a tailored heat treatment approach is required for LPBF-printed components to regulate their microstructure and properties effectively. This study investigated the modulation mechanism of subsequent heat treatment on the non-equilibrium microstructure and high-temperature mechanical properties of 3D-printed GH4099 superalloy produced via LPBF. The findings reveal that solution treatment influences the recrystallization behavior of the printed microstructure and the precipitation behavior of carbides and γ' phases, which play critical roles in determining the alloy's high-temperature elongation. The multi-scale heterogeneous structure in the LPBF-fabricated GH4099 alloy enhances its microstructural thermal stability beyond that of conventional castings and forgings. Consequently, a high solution heat treatment temperature is necessary to achieve complete recrystallization. Following solution treatment at 1150 oC for 1.5 h, the columnar grains in the GH4099 prints were transformed into equiaxed grains, and large size twins were formed. Additionally, the precipitation of M23C6 carbides at the grain boundaries was suppressed. During subsequent aging heat treatment, the recrystallization induced by the solution treatment mitigated the distortion energy stored in the 3D-printed grains, thereby suppressing γ' phase precipitation in the matrix. As a result, by optimizing the heat treatment process, a favorable balance between high-temperature strength and plasticity was achieved in the GH4099 alloy.

Key wordslaser powder bed fusion    non-equilibrium microstructure    heat treatment    γ' phase    high- temperature mechanical property
收稿日期: 2024-06-17     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(U22A20172);国家自然科学基金项目(52122409);国家重点研发计划项目(2023YFB3712002)
通讯作者: 马宗青,zqma@tju.edu.cn,主要从事金属材料粉体制备、粉末冶金和3D打印成形的研究
Corresponding author: MA Zongqing, professor, Tel: 13702124121, E-mail: zqma@tju.edu.cn
作者简介: 赵亚楠,男,1996年生,博士生
No.Heat treatment scheme
S11100 oC, 1 h, AC
S21150 oC, 1.5 h, AC
SA1-7501100 oC, 1 h, AC, 750 oC, 8 h, AC
SA1-8001100 oC, 1 h, AC, 800 oC, 8 h, AC
SA1-8501100 oC, 1 h, AC, 850 oC, 8 h, AC
SA2-7501150 oC, 1.5 h, AC, 750 oC, 8 h, AC
表1  激光粉末床熔融(LPBF)制备GH4099合金样品的热处理方案
图1  LPBF制备GH4099合金成形态样品的原始微观组织和枝晶界的EDX线扫描结果
图2  LPBF制备GH4099合金及经S1和S2固溶热处理后的反极图,及不同状态下晶粒尺寸和硬度的变化
图3  LPBF制备GH4099合金样品经S1和S2固溶热处理后晶界析出相的SEM像和EDX分析结果
图4  LPBF制备GH4099合金样品经SA1-750、SA1-800、SA1-850和SA2-750热处理后γ'相的微观组织
Sampled / nmσb / MPaδ / %
SA1-75021 ± 5498 ± 1214.4 ± 3
SA1-80033 ± 7456 ± 815.2 ± 1
SA1-85060 ± 10390 ± 1018.9 ± 4
SA2-75015 ± 4463 ± 729.7 ± 2
表2  不同热处理后LPBF制备GH4099合金样品中的γ'相尺寸和力学性能
图5  不同热处理后LPBF制备GH4099合金样品的DSC曲线
图6  S1和S2热处理后LPBF制备GH4099合金样品的晶粒取向分布(GOS)图、晶粒GOS值统计图和晶界取向差分布图
图7  不同热处理制度处理后LPBF制备GH4099合金样品在900 ℃拉伸的应力-应变曲线及其与文献[16,39,43~45]报道的LPBF制备镍基高温合金在900 ℃下拉伸性能的比较
图8  SA1-750和SA2-750热处理后LPBF制备GH4099合金拉伸样品断口及纵截面微观形貌的SEM像
图9  SA2-750处理样品经高温拉伸后的反极图和内核平均取向差分布图,晶界处位错与M23C6碳化物之间相互作用及晶粒内位错与γ'相之间相互作用的TEM像
1 Yang B, Shang Z, Ding J, et al. Investigation of strengthening mechanisms in an additively manufactured Haynes 230 alloy[J]. Acta Mater., 2022, 222: 117404
2 Sun S S, Teng Q, Xie Y, et al. Two-step heat treatment for laser powder bed fusion of a nickel-based superalloy with simultaneously enhanced tensile strength and ductility[J]. Addit. Manuf., 2021, 46: 102168
3 Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718[J]. Addit. Manuf., 2019, 30: 100877
4 Song B, Zhang J L, Zhang Y J, et al. Research progress of materials design for metal laser additive manufacturing[J]. Acta Metall. Sin., 2023, 59: 1
doi: 10.11900/0412.1961.2022.00026
4 宋 波, 张金良, 章媛洁 等. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59: 1
5 Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549: 365
6 Yang X, Wang B, Gu W P, et al. Application and research status of numerical simulation of metal laser 3D printing process[J]. J. Mater. Eng., 2021, 49(4): 52
doi: 10.11868/j.issn.1001-4381.2020.000235
6 杨 鑫, 王 犇, 谷文萍 等. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程, 2021, 49(4): 52
7 Sun Z J, Tan X P, Tor S B, et al. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting[J]. npg Asia Mater., 2018, 10: 127
8 Chen Y, Guo Y B, Xu M J, et al. Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and Gaussian distribution laser[J]. Mater. Sci. Eng., 2019, A754: 339
9 Nadammal N, Mishurova T, Fritsch T, et al. Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing[J]. Addit. Manuf., 2021, 38: 101792
10 Liu L F, Ding Q Q, Zhong Y, et al. Dislocation network in additive manufactured steel breaks strength-ductility trade-off[J]. Mater. Today, 2018, 21: 354
11 Voisin T, Forien J B, Perron A, et al. New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion[J]. Acta Mater., 2021, 203: 116476
12 Zhao Y N, Guo Q Y, Ma Z Q, et al. Comparative study on the microstructure evolution of selective laser melted and wrought IN718 superalloy during subsequent heat treatment process and its effect on mechanical properties[J]. Mater. Sci. Eng., 2020, A791: 139735
13 Kok Y, Tan X P, Wang P, et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review[J]. Mater. Des., 2018, 139: 565
14 Zhao Y H, Li K, Gargani M, et al. A comparative analysis of Inconel 718 made by additive manufacturing and suction casting: Microstructure evolution in homogenization[J]. Addit. Manuf., 2020, 36: 101404
15 Wei B, Liu Z M, Nong B Z, et al. Microstructure, cracking behavior and mechanical properties of René 104 superalloy fabricated by selective laser melting[J]. J. Alloys Compd., 2021, 867: 158377
16 Tang Y T, Panwisawas C, Ghoussoub J N, et al. Alloys-by-design: Application to new superalloys for additive manufacturing[J]. Acta Mater., 2021, 202: 417
17 Cloots M, Uggowitzer P J, Wegener K. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles[J]. Mater. Des., 2016, 89: 770
18 Chang K, Ma L, Li P T, et al. Effect of heat treatment on microstructure and mechanical properties of GH4099 superalloy fabricated by selective laser melting[J]. J. Alloys Compd., 2023, 934: 167813
19 Harte A, Atkinson M, Smith A, et al. The effect of solid solution and gamma prime on the deformation modes in Ni-based superalloys[J]. Acta Mater., 2020, 194: 257
20 Li J, Ding R, Guo Q Y, et al. Effect of solution cooling rate on microstructure evolution and mechanical properties of Ni-based superalloy ATI 718Plus[J]. Mater. Sci. Eng., 2021, A812: 141113
21 Zhang P, Yuan Y, Yin H, et al. Tensile properties and deformation mechanisms of Haynes 282 at various temperatures[J]. Metall. Mater. Trans., 2018, 49A: 1571
22 Hu R, Bai G H, Li J S, et al. Precipitation behavior of grain boundary M23C6 and its effect on tensile properties of Ni-Cr-W based superalloy[J]. Mater. Sci. Eng., 2012, A548: 83
23 Dong R F, Li J S, Zhang T B, et al. Elements segregation and phase precipitation behavior at grain boundary in a Ni-Cr-W based superalloy[J]. Mater. Charact., 2016, 122: 189
24 Tang Y T, Panwisawas C, Jenkins B M, et al. Multi-length-scale study on the heat treatment response to supersaturated nickel-based superalloys: Precipitation reactions and incipient recrystallisation[J]. Addit. Manuf., 2023, 62: 103389
25 Son K T, Phan T Q, Levine L E, et al. The creep and fracture properties of additively manufactured inconel 625[J]. Materialia, 2021, 15: 101021
26 Inaekyan K, Kreitcberg A, Turenne S, et al. Microstructure and mechanical properties of laser powder bed-fused IN625 alloy[J]. Mater. Sci. Eng., 2019, A768: 138481
27 Li Y, Kan W B, Zhang Y M, et al. Microstructure, mechanical properties and strengthening mechanisms of IN738LC alloy produced by electron beam selective melting[J]. Addit. Manuf., 2021, 47: 102371
28 Zhang H B, Zhang K F, Jiang S S, et al. Dynamic recrystallization behavior of a γ′-hardened nickel-based superalloy during hot deformation[J]. J. Alloys Compd., 2015, 623: 374
29 Gao Y B, Ding Y T, Chen J J, et al. Effect of twin boundaries on the microstructure and mechanical properties of Inconel 625 alloy[J]. Mater. Sci. Eng., 2019, A767: 1383611
30 Lu Y J, Zhao W, Yang C, et al. Improving mechanical properties of selective laser melted Co29Cr9W3Cu alloy by eliminating mesh-like random high-angle grain boundary[J]. Mater. Sci. Eng., 2020, A793: 1
31 Gao S B, Hu Z H, Duchamp M, et al. Recrystallization-based grain boundary engineering of 316L stainless steel produced via selective laser melting[J]. Acta Mater., 2020, 200: 366
32 Zhang L, Liu H S, He X B, et al. Thermal evolution behavior of carbides and γ′ precipitates in FGH96 superalloy powder[J]. Mater. Charact., 2012, 67: 52
33 Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021 pmid: 29115290
34 Bai G H, Hu R, Li J S, et al. Secondary M23C6 precipitation behavior in Ni-Cr-W based superalloy[J]. Rare Met. Mater. Eng., 2011, 40: 1737
34 柏广海, 胡 锐, 李金山 等. Ni-Cr-W基高温合金二次M23C6析出行为[J]. 稀有金属材料与工程, 2011, 40: 1737
35 Tan Y, You X G, You Q F, et al. Microstructure and deformation behavior of nickel based superalloy Inconel 740 prepared by electron beam smelting[J]. Mater. Charact., 2016, 114: 267
36 Wang Z Y, Muránsky O, Zhu H L, et al. On the kinetics of gamma prime (γ') precipitation and its strengthening mechanism in alloy 617 during a long-term thermal aging[J]. Materialia, 2020, 11: 100682
37 Mei Y P, Liu Y C, Liu C X, et al. Effects of cold rolling on the precipitation kinetics and the morphology evolution of intermediate phases in Inconel 718 alloy[J]. J. Alloys Compd., 2015, 649: 949
38 Qin H L, Bi Z N, Yu H Y, et al. Influence of stress on γ″ precipitation behavior in Inconel 718 during aging[J]. J. Alloys Compd., 2018, 740: 997
39 Bober D B, Lind J, Mulay R P, et al. The formation and characterization of large twin related domains[J]. Acta Mater., 2017, 129: 500
40 Kumar N. An exploration of microstructural in-homogeneity in the 6082 Al alloy processed through room temperature multi-axial forging[J]. Mater. Charact., 2021, 176: 111134
41 Chinese Society of Metals High Temperature Materials Branch. China Superalloys Handbook[M]. Beijing: China Quality Inspection Press, 2012: 599
41 中国金属学会高温材料分会. 中国高温合金手册[M]. 北京: 中国质检出版社, 2012: 599
42 Gallmeyer T G, Moorthy S, Kappes B B, et al. Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718[J]. Addit. Manuf., 2020, 31: 100977
43 Zhang Z H, Han Q Q, Liu Z Y, et al. Influence of the TiB2 content on the processability, microstructure and high-temperature tensile performance of a Ni-based superalloy by laser powder bed fusion[J]. J. Alloys Compd., 2022, 908: 164656
44 Du B N, Hu Z Y, Sheng L Y, et al. Tensile, creep behavior and microstructure evolution of an as-cast Ni-based K417G polycrystalline superalloy[J]. J. Mater. Sci. Technol., 2018, 34: 1805
doi: 10.1016/j.jmst.2018.02.007
45 de Oliveira M M, Couto A A, Almeida G F C, et al. Mechanical behavior of Inconel 625 at elevated temperatures[J]. Metals, 2019, 9: 301
46 Hu Y L, Li Y L, Zhang S Y, et al. Effect of solution temperature on static recrystallization and ductility of Inconel 625 superalloy fabricated by directed energy deposition[J]. Mater. Sci. Eng., 2020, A772: 138711
47 Hu Y L, Lin X, Zhang S Y, et al. Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming[J]. J. Alloys Compd., 2018, 767: 330
48 McCarley J, Helmink R, Goetz R, et al. Grain boundary engineering of a low stacking fault energy Ni-based Superalloy[J]. Metall. Mater. Trans., 2017, 48A: 1666
49 Hu Z P, Guan K, Qian Z, et al. Simultaneous enhancement of strength and ductility in selective laser melting manufactured 316L alloy by employing Y2O3 coated spherical powder as precursor[J]. J. Alloys Compd., 2022, 899: 163262
50 Németh A A N, Crudden D J, Armstrong D E J, et al. Environmentally-assisted grain boundary attack as a mechanism of embrittlement in a nickel-based superalloy[J]. Acta Mater., 2017, 126: 361
51 Zheng L, Schmitz G, Meng Y, et al. Mechanism of intermediate temperature embrittlement of Ni and Ni-based superalloys[J]. Crit. Rev. Solid State Mater. Sci., 2012, 37: 181
52 Bahl S, Plotkowski A, Sisco K, et al. Elevated temperature ductility dip in an additively manufactured Al-Cu-Ce alloy[J]. Acta Mater., 2021, 220: 117285
53 Lei Y C, Aoyagi K, Aota K, et al. Critical factor triggering grain boundary cracking in non-weldable superalloy Alloy713ELC fabricated with selective electron beam melting[J]. Acta Mater., 2021, 208: 116695
54 Hrutkay K, Kaoumi D. Tensile deformation behavior of a nickel based superalloy at different temperatures[J]. Mater. Sci. Eng., 2014, A599: 196
55 Shin K Y, Kim J H, Terner M, et al. Effects of heat treatment on the microstructure evolution and the high-temperature tensile properties of Haynes 282 superalloy[J]. Mater. Sci. Eng., 2019, A751: 311
56 Zhong Z H, Gu Y F, Yuan Y, et al. Tensile properties and deformation characteristics of a Ni-Fe-base superalloy for steam boiler applications[J]. Metall. Mater. Trans., 2013, 45A: 343
[1] 唐丽婷, 郭倩颖, 李冲, 丁然, 刘永长. Allvac 718Plus高温合金第二相演变与性能研究进展[J]. 金属学报, 2025, 61(1): 43-58.
[2] 李亚微, 谢光, 柯于斌, 卢玉章, 黄亚奇, 张健. 小角中子散射原位研究镍基高温合金第二相析出演化行为[J]. 金属学报, 2024, 60(8): 1100-1108.
[3] 张星星, LUTZ Andreas, 甘为民, MAAWAD Emad, KRIELE Armin. 退火热处理对增材制造AlSi10Mg合金宏观和微观变形行为的影响[J]. 金属学报, 2024, 60(8): 1091-1099.
[4] 张竟文, 余黎明, 刘晨曦, 丁然, 刘永长. Cr马氏体耐热钢的协同强化机制及形变热处理应用[J]. 金属学报, 2024, 60(6): 713-730.
[5] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[6] 余华, 李昕, 江河, 姚志浩, 董建新. 碳化物特征对GH3536合金冷变形损伤的影响及控制[J]. 金属学报, 2024, 60(4): 464-472.
[7] 田晓生, 卢正冠, 徐磊, 吴杰, 杨锐. 粉末冶金Inconel 718合金的热等静压成形和原始颗粒边界的消除[J]. 金属学报, 2024, 60(11): 1487-1498.
[8] 唐旭, 张昊, 薛鹏, 吴利辉, 刘峰超, 朱正旺, 倪丁瑞, 肖伯律, 马宗义. 铸态及激光粉末床熔融AlCoCrFeNi2.1 共晶高熵合金的微观组织及力学性能[J]. 金属学报, 2024, 60(11): 1461-1470.
[9] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[10] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[13] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[14] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[15] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.