Please wait a minute...
金属学报  2025, Vol. 61 Issue (1): 143-153    DOI: 10.11900/0412.1961.2024.00111
  研究论文 本期目录 | 过刊浏览 |
Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变
王叶青, 付珂, 赵永柱, 苏礼季, 陈正()
中国矿业大学 材料与物理学院 徐州 221116
Non-Equilibrium Solidification Behavior and Microstructure Evolution of Undercooled Fe7(CoNiMn)80B13 Eutectic High-Entropy Alloy
WANG Yeqing, FU Ke, ZHAO Yongzhu, SU Liji, CHEN Zheng()
School of Material Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
引用本文:

王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
Yeqing WANG, Ke FU, Yongzhu ZHAO, Liji SU, Zheng CHEN. Non-Equilibrium Solidification Behavior and Microstructure Evolution of Undercooled Fe7(CoNiMn)80B13 Eutectic High-Entropy Alloy[J]. Acta Metall Sin, 2025, 61(1): 143-153.

全文: PDF(3933 KB)   HTML
摘要: 

Fe7(CoNiMn)80B13共晶高熵合金在非平衡凝固过程中存在复杂的相变及微观组织演变行为。为了揭示其非平衡凝固特征及组织演变机理,本工作采用熔融玻璃包覆法对Fe7(CoNiMn)80B13共晶高熵合金进行了深过冷凝固,研究了该共晶高熵合金的深过冷凝固行为及微观组织演变特征。结果表明,Fe7(CoNiMn)80B13共晶高熵合金在深过冷凝固过程中的凝固路径及凝固组织可以分为5类。在小过冷度下(ΔT < 57 K),冷却曲线只有一次再辉现象,对应的凝固组织为初生富B相+ α-(Fe, Co, Ni, Mn)包晶相+共晶组织。在中等过冷度下(ΔT = 57~111 K),冷却曲线上出现2次再辉现象,对应的凝固组织可以分为2种:第一种为初生M23B6枝晶+次生α-(Fe, Co, Ni, Mn)晕圈+规则共晶;第二种为初生α-(Fe, Co, Ni, Mn)枝晶+规则共晶。在大过冷度下(ΔT = 139~198 K),冷却曲线再次表现出单再辉现象,对应的凝固组织也可以分为2种:第一种为富B相 + M23B6 + α-(Fe, Co, Ni, Mn),3相各自存在;第二种为M23B6 + α-(Fe, Co, Ni, Mn)的反常共晶。随着过冷度的增加,初生相的种类发生了2次转变:富B相→M23B6相→α-(Fe, Co, Ni, Mn)相。另外,小过冷度下获得的规则共晶中共晶2相的取向关系与大过冷度下获得的反常共晶中共晶2相的取向关系一致。

关键词 共晶高熵合金深过冷凝固非平衡凝固行为微观组织凝固路径    
Abstract

Eutectic high-entropy alloys show excellent properties, such as casting property, mechanical properties, corrosion resistance properties, and so on. They are usually consisted of two kinds of phases, which would be compete with each other in the non-equilibrium solidification process. Fe7(CoNiMn)80B13 eutectic high-entropy alloy has complex phase transition and microstructure evolution behavior during the non-equilibrium solidification process. In order to reveal the non-equilibrium solidification characteristics and microstructure evolution mechanism, Fe7(CoNiMn)80B13 eutectic high-entropy alloy was undercooled by the molten glass fluxing method in this work. The results show that the solidification path and microstructure of undercooled Fe7(CoNiMn)80B13 eutectic high-entropy alloy can be divided into 5 categories. At low undercooling (ΔT < 57 K), the cooling curve has only one recalescence phenomenon. The corresponding solidification microstructure is primary B-rich phase + peritectic α-(Fe, Co, Ni, Mn) phase + eutectic structure. At medium undercooling (ΔT = 57~111 K), there are two recalescence phenomena on the cooling curve. The corresponding solidification microstructure can be divided into two types: the first is primary M23B6 dendrite + secondary α-(Fe, Co, Ni, Mn) halo + regular eutectic; the second is primary α-(Fe, Co, Ni, Mn) dendrite + regular eutectic. At high undercooling (ΔT = 139~198 K), the cooling curve shows a single recalescence phenomenon again. The corresponding solidification microstructure can be divided into two types: the first is a mixture of B-rich phase + M23B6 + α-(Fe, Co, Ni, Mn) three phases, and the second is M23B6 + α-(Fe, Co, Ni, Mn) anomalous eutectic. Note that the type of primary phase transited for twice with the increase of undercooling: B-rich phase→M23B6 phase→α-(Fe, Co, Ni, Mn) phase. In addition, the orientation relationship of two eutectic phases in regular eutectic at low undercooling is consistent with that of two phases in anomalous eutectic at high undercooling.

Key wordseutectic high-entropy alloy    undercooling solidification    non-equilibrium solidification behavior    microstructure    solidification path
收稿日期: 2024-04-16     
ZTFLH:  TG21  
基金资助:国家自然科学基金项目(52201055);国家自然科学基金项目(52274401)
通讯作者: 陈 正,chenzheng1218@163.com,主要从事金属非平衡凝固与材料成型加工研究
Corresponding author: CHEN Zheng, professor, Tel: 13655207199, E-mail: chenzheng1218@163.com
作者简介: 王叶青,女,1991年生,博士
图1  Fe7(CoNiMn)80B13共晶高熵合金深过冷过程中的几种典型温度-时间关系图
图2  铸态和不同过冷度(ΔT)下Fe7(CoNiMn)80B13共晶高熵合金的XRD谱
图3  ΔT = 23 K下Fe7(CoNiMn)80B13共晶高熵合金的SEM背散射电子(BSE)像及EDS线扫描图
ΔT / KRegionFeCoNiMn
023Average10.041.140.508.4
Dark phase14.755.324.805.2
Light phase11.747.333.807.2
057Average09.738.938.412.9
Dark phase14.756.420.708.2
090Average08.431.329.530.8
Dark phase16.743.911.927.5
Light phase12.037.520.430.1
139Average10.241.036.712.0
P111.642.633.711.0
P204.419.653.623.4
P314.352.821.607.3
198Average09.240.738.511.6
Dark phase04.326.450.119.2
Light phase12.846.533.007.7
表1  不同过冷度Fe7(CoNiMn)80B13共晶高熵合金的EDS分析结果 (atomic fraction / %)
图4  在中等和大过冷度下Fe7(MnCoNi)80B13共晶高熵合金的SEM-BSE像
图5  ΔT = 57 K时Fe7(CoNiMn)80B13共晶高熵合金中共晶组织的EBSD分析
图6  ΔT = 198 K时Fe7(CoNiMn)80B13共晶高熵合金中反常共晶组织的EBSD分析
图7  在不同过冷度下Fe7(CoNiMn)80B13共晶高熵合金表面的宏观固-液界面形貌
1 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
2 Jiao W N, Lu Y P, Cao Z Q, et al. Progress and prospect of eutectic high entropy alloys[J]. Spec. Cast. Nonferrous Alloys, 2022, 42: 265
2 焦文娜, 卢一平, 曹志强 等. 共晶高熵合金的研究进展及展望[J]. 特种铸造及有色合金, 2022, 42: 265
doi: 10.15980/j.tzzz.2022.03.001
3 Wu P H, Liu N, Yang W, et al. Microstructure and solidification behavior of multicomponent CoCrCu x FeMoNi high-entropy alloys[J]. Mater. Sci. Eng., 2015, A642: 142
4 Shukla S, Wang T H, Cotton S, et al. Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy[J]. Scr. Mater., 2018, 156: 105
5 Wang M L, Lu Y P, Wang T M, et al. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures[J]. Scr. Mater., 2021, 204: 114132
6 Jiang H, Han K M, Gao X X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Mater. Des., 2018, 142: 101
7 Jiang H, Qiao D X, Lu Y P, et al. Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability[J]. Scr. Mater., 2019, 165: 145
8 Rogal Ł, Morgiel J, Świątek Z, et al. Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy[J]. Mater. Sci. Eng., 2016, A651: 590
9 Ye X C, Xiong J Y, Wu X, et al. A new infinite solid solution strategy to design eutectic high entropy alloys with B2 and BCC structure[J]. Scr. Mater., 2021, 199: 113886
10 Wang F J, Zhang Y, Chen G L, et al. Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy[J]. J. Eng. Mater. Technol., 2009, 131: 034501
11 Li J S, Jia W J, Wang J, et al. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method[J]. Mater. Des., 2016, 95: 183
12 Cao L G, Zhu L, Zhang L L, et al. Microstructure evolution and mechanical properties of rapid solidified AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Chin. J. Mater. Res., 2019, 33: 650
12 曹雷刚, 朱 琳, 张磊磊 等. 快速凝固AlCoCrFeNi2.1共晶高熵合金的微观组织演变和力学性能[J]. 材料研究学报, 2019, 33: 650
doi: 10.11901/1005.3093.2019.069
13 Zhao K, Wu S, Jiang S Y, et al. Microstructural refinement and anomalous eutectic structure induced by containerless solidification for high-entropy Fe-Co-Ni-Si-B alloys[J]. Intermetallics, 2020, 122: 106812
14 Yan P X, Chang J, Wang W L, et al. Eutectic growth kinetics and microscopic mechanical properties of rapidly solidified CoCrFeNiMo0.8 high entropy alloy[J]. Acta Mater., 2022, 237: 118149
15 Nassar A, Mullis A, Cochrane R, et al. Rapid solidification of AlCoCrFeNi2.1 high-entropy alloy[J]. J. Alloys Compd., 2022, 900: 163350
16 Guo Y N, Su H J, Zhou H T, et al. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting[J]. J. Mater. Sci. Technol., 2022, 111: 298
17 Su J, Chen S Q, Ding Z Y, et al. Solidification behavior of eutectic high entropy alloy fabricated by selective laser melting[J]. Chin. J. Nonferrous Met., 2022, 32: 658
17 苏 捷, 陈仕奇, 丁正阳 等. 选区激光熔化共晶高熵合金凝固行为[J]. 中国有色金属学报, 2022, 32: 658
18 Liang X Y, Chen J, Yao Y H, et al. A novel nano-spaced coherent FCC1/FCC2 eutectic high entropy alloy[J]. Mater. Lett., 2023, 337: 133952
19 Qi T L, Li Y H, Takeuchi A, et al. Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses[J]. Intermetallics, 2015, 66: 8
20 Zhang Z Q, Song K K, Guo S, et al. Optimizing mechanical properties of Fe26.7Co26.7Ni26.7Si8.9B11 high entropy alloy by inducing hypoeutectic to quasi-duplex microstructural transition[J]. Sci. Rep., 2019, 9: 360
21 Fu K, Yin B J, Zhao Y Z, et al. Effect of boron content on microstructure evolution and crystallization behavior of Fe7(CoNi)93 - x B x (x = 15, 18, 21) eutectic high-entropy alloys[J]. Intermetallics, 2024, 165: 108131
22 Gao J R, Kao A, Bojarevics V, et al. Modeling of convection, temperature distribution and dendritic growth in glass-fluxed nickel melts[J]. J. Cryst. Growth, 2017, 471: 66
23 Wang Y Q, Shan C X, Wang L, et al. A new complex-regular eutectic in the Fe7(CoNiMn)93 - x B x high entropy alloys[J]. J. Mater. Res. Technol., 2024, 30: 4521
24 Yang C L, Liu F, Yang G C, et al. Structure evolution upon non-equilibrium solidification of bulk undercooled Fe-B system[J]. J. Cryst. Growth, 2009, 311: 404
25 Wang Y Q, Gao J R, Kolbe M, et al. Metastable solidification of hypereutectic Co2Si-CoSi composition: Microstructural studies and in-situ observations[J]. Acta Mater., 2018, 142: 172
26 Zhao R J, Wang Y Q, Gao J R, et al. In situ and ex situ studies of anomalous eutectic formation in undercooled Ni-Sn alloys[J]. Acta Mater., 2020, 197: 198
27 Miettinen J, Vassilev G. Thermodynamic description of ternary Fe-B-X systems. Part 2: Fe-B-Ni[J]. Arch. Metall. Mater., 2014, 59: 609
28 van Loo F J J, van Beek J A. Reactions and phase relations in the systems Fe-Ni-B and Fe-Co-B[J]. Z. Metallkd., 1989, 80: 245
29 Miettinen J, Lilova K, Vassilev G. Thermodynamic description of ternary Fe-B-X systems. Part 3: Fe-B-Mn[J]. Arch. Metall. Mater., 2014, 59: 1481
30 Jackson K A, Hunt J D. Lamellar and rod eutectic growth[A]. Dynamics of Curved Fronts[M]. Pittsburgh: Academic Press, 1988: 363
31 Wang Y Q, Gao J R, Shahani A J. Effects of Al substitution for Zn on the non-equilibrium solidification behavior of Zn-3Mg alloys[A]. Materials Processing Fundamentals 2020[M]. Cham: Springer, 2020: 23
32 Kattamis T Z, Flemings M C. Structure of undercooled Ni-Sn eutectic[J]. Metall. Trans., 1970, 1B: 1449
33 Wu Y, Piccone T J, Shiohara Y, et al. Dendritic growth of undercooled nickel-tin: Part III[J]. Metall. Trans., 1988, 19A: 1109
34 Jones B L. Growth mechanisms in undercooled eutectics[J]. Metall. Trans., 1971, 2: 2950
35 Tewari S N. Effect of undercooling on the microstructure of Ni-35 at. pct Mo (eutectic) and Ni-38 at. pct Mo (hypereutectic) alloys[J]. Metall. Trans., 1987, 18A: 525
36 Zhao S, Li J F, Liu L, et al. Eutectic growth from cellular to dendritic form in the undercooled Ag-Cu eutectic alloy melt[J]. J. Cryst. Growth, 2009, 311: 1387
37 Liu L, Li J F, Zhou Y H. Solidification interface morphology pattern in the undercooled Co-24.0at.% Sn eutectic melt[J]. Acta Mater., 2011, 59: 5558
38 Goetzinger R, Barth M, Herlach D M. Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni-Si, Co-Sb and Ni-Al-Ti alloys[J]. Acta Metall., 1998, 46: 1647
39 Lai C, Wang H F, Pu Q, et al. Phase selection and re-melting-induced anomalous eutectics in undercooled Ni-38 wt% Si alloys[J]. J. Mater. Sci., 2016, 51: 10990
[1] 王志军, 白晓昱, 王健斌, 姜慧, 焦文娜, 李天昕, 卢一平. 共晶高熵合金十年发展回顾(20142024):设计、制备与应用[J]. 金属学报, 2025, 61(1): 1-11.
[2] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[3] 李俊杰, 李盼悦, 黄立清, 郭杰, 吴京洋, 樊凯, 王锦程. 真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展[J]. 金属学报, 2025, 61(1): 12-28.
[4] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[5] 卢健麟, 任化永, 谢桉, 王建潼, 何峰. Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 共晶高熵合金快速凝固行为及组织调控[J]. 金属学报, 2025, 61(1): 191-202.
[6] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[7] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[8] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
[9] 熊毅, 栾泽伟, 马云飞, 厉勇, 查小琴. 超音速微粒轰击诱导表面纳米化对300M钢腐蚀疲劳行为的影响[J]. 金属学报, 2024, 60(5): 627-638.
[10] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[11] 蔡杰, 高杰, 花银群, 叶云霞, 关庆丰, 张小锋. 强流脉冲电子束辐照对低压等离子喷涂 MCrAlY涂层组织与性能的影响[J]. 金属学报, 2024, 60(4): 495-508.
[12] 唐旭, 张昊, 薛鹏, 吴利辉, 刘峰超, 朱正旺, 倪丁瑞, 肖伯律, 马宗义. 铸态及激光粉末床熔融AlCoCrFeNi2.1 共晶高熵合金的微观组织及力学性能[J]. 金属学报, 2024, 60(11): 1461-1470.
[13] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[14] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[15] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.