|
|
Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变 |
王叶青, 付珂, 赵永柱, 苏礼季, 陈正( ) |
中国矿业大学 材料与物理学院 徐州 221116 |
|
Non-Equilibrium Solidification Behavior and Microstructure Evolution of Undercooled Fe7(CoNiMn)80B13 Eutectic High-Entropy Alloy |
WANG Yeqing, FU Ke, ZHAO Yongzhu, SU Liji, CHEN Zheng( ) |
School of Material Science and Physics, China University of Mining and Technology, Xuzhou 221116, China |
引用本文:
王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
Yeqing WANG,
Ke FU,
Yongzhu ZHAO,
Liji SU,
Zheng CHEN.
Non-Equilibrium Solidification Behavior and Microstructure Evolution of Undercooled Fe7(CoNiMn)80B13 Eutectic High-Entropy Alloy[J]. Acta Metall Sin, 2025, 61(1): 143-153.
1 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
2 |
Jiao W N, Lu Y P, Cao Z Q, et al. Progress and prospect of eutectic high entropy alloys[J]. Spec. Cast. Nonferrous Alloys, 2022, 42: 265
|
2 |
焦文娜, 卢一平, 曹志强 等. 共晶高熵合金的研究进展及展望[J]. 特种铸造及有色合金, 2022, 42: 265
doi: 10.15980/j.tzzz.2022.03.001
|
3 |
Wu P H, Liu N, Yang W, et al. Microstructure and solidification behavior of multicomponent CoCrCu x FeMoNi high-entropy alloys[J]. Mater. Sci. Eng., 2015, A642: 142
|
4 |
Shukla S, Wang T H, Cotton S, et al. Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy[J]. Scr. Mater., 2018, 156: 105
|
5 |
Wang M L, Lu Y P, Wang T M, et al. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures[J]. Scr. Mater., 2021, 204: 114132
|
6 |
Jiang H, Han K M, Gao X X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Mater. Des., 2018, 142: 101
|
7 |
Jiang H, Qiao D X, Lu Y P, et al. Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability[J]. Scr. Mater., 2019, 165: 145
|
8 |
Rogal Ł, Morgiel J, Świątek Z, et al. Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy[J]. Mater. Sci. Eng., 2016, A651: 590
|
9 |
Ye X C, Xiong J Y, Wu X, et al. A new infinite solid solution strategy to design eutectic high entropy alloys with B2 and BCC structure[J]. Scr. Mater., 2021, 199: 113886
|
10 |
Wang F J, Zhang Y, Chen G L, et al. Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy[J]. J. Eng. Mater. Technol., 2009, 131: 034501
|
11 |
Li J S, Jia W J, Wang J, et al. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method[J]. Mater. Des., 2016, 95: 183
|
12 |
Cao L G, Zhu L, Zhang L L, et al. Microstructure evolution and mechanical properties of rapid solidified AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Chin. J. Mater. Res., 2019, 33: 650
|
12 |
曹雷刚, 朱 琳, 张磊磊 等. 快速凝固AlCoCrFeNi2.1共晶高熵合金的微观组织演变和力学性能[J]. 材料研究学报, 2019, 33: 650
doi: 10.11901/1005.3093.2019.069
|
13 |
Zhao K, Wu S, Jiang S Y, et al. Microstructural refinement and anomalous eutectic structure induced by containerless solidification for high-entropy Fe-Co-Ni-Si-B alloys[J]. Intermetallics, 2020, 122: 106812
|
14 |
Yan P X, Chang J, Wang W L, et al. Eutectic growth kinetics and microscopic mechanical properties of rapidly solidified CoCrFeNiMo0.8 high entropy alloy[J]. Acta Mater., 2022, 237: 118149
|
15 |
Nassar A, Mullis A, Cochrane R, et al. Rapid solidification of AlCoCrFeNi2.1 high-entropy alloy[J]. J. Alloys Compd., 2022, 900: 163350
|
16 |
Guo Y N, Su H J, Zhou H T, et al. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting[J]. J. Mater. Sci. Technol., 2022, 111: 298
|
17 |
Su J, Chen S Q, Ding Z Y, et al. Solidification behavior of eutectic high entropy alloy fabricated by selective laser melting[J]. Chin. J. Nonferrous Met., 2022, 32: 658
|
17 |
苏 捷, 陈仕奇, 丁正阳 等. 选区激光熔化共晶高熵合金凝固行为[J]. 中国有色金属学报, 2022, 32: 658
|
18 |
Liang X Y, Chen J, Yao Y H, et al. A novel nano-spaced coherent FCC1/FCC2 eutectic high entropy alloy[J]. Mater. Lett., 2023, 337: 133952
|
19 |
Qi T L, Li Y H, Takeuchi A, et al. Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses[J]. Intermetallics, 2015, 66: 8
|
20 |
Zhang Z Q, Song K K, Guo S, et al. Optimizing mechanical properties of Fe26.7Co26.7Ni26.7Si8.9B11 high entropy alloy by inducing hypoeutectic to quasi-duplex microstructural transition[J]. Sci. Rep., 2019, 9: 360
|
21 |
Fu K, Yin B J, Zhao Y Z, et al. Effect of boron content on microstructure evolution and crystallization behavior of Fe7(CoNi)93 - x B x (x = 15, 18, 21) eutectic high-entropy alloys[J]. Intermetallics, 2024, 165: 108131
|
22 |
Gao J R, Kao A, Bojarevics V, et al. Modeling of convection, temperature distribution and dendritic growth in glass-fluxed nickel melts[J]. J. Cryst. Growth, 2017, 471: 66
|
23 |
Wang Y Q, Shan C X, Wang L, et al. A new complex-regular eutectic in the Fe7(CoNiMn)93 - x B x high entropy alloys[J]. J. Mater. Res. Technol., 2024, 30: 4521
|
24 |
Yang C L, Liu F, Yang G C, et al. Structure evolution upon non-equilibrium solidification of bulk undercooled Fe-B system[J]. J. Cryst. Growth, 2009, 311: 404
|
25 |
Wang Y Q, Gao J R, Kolbe M, et al. Metastable solidification of hypereutectic Co2Si-CoSi composition: Microstructural studies and in-situ observations[J]. Acta Mater., 2018, 142: 172
|
26 |
Zhao R J, Wang Y Q, Gao J R, et al. In situ and ex situ studies of anomalous eutectic formation in undercooled Ni-Sn alloys[J]. Acta Mater., 2020, 197: 198
|
27 |
Miettinen J, Vassilev G. Thermodynamic description of ternary Fe-B-X systems. Part 2: Fe-B-Ni[J]. Arch. Metall. Mater., 2014, 59: 609
|
28 |
van Loo F J J, van Beek J A. Reactions and phase relations in the systems Fe-Ni-B and Fe-Co-B[J]. Z. Metallkd., 1989, 80: 245
|
29 |
Miettinen J, Lilova K, Vassilev G. Thermodynamic description of ternary Fe-B-X systems. Part 3: Fe-B-Mn[J]. Arch. Metall. Mater., 2014, 59: 1481
|
30 |
Jackson K A, Hunt J D. Lamellar and rod eutectic growth[A]. Dynamics of Curved Fronts[M]. Pittsburgh: Academic Press, 1988: 363
|
31 |
Wang Y Q, Gao J R, Shahani A J. Effects of Al substitution for Zn on the non-equilibrium solidification behavior of Zn-3Mg alloys[A]. Materials Processing Fundamentals 2020[M]. Cham: Springer, 2020: 23
|
32 |
Kattamis T Z, Flemings M C. Structure of undercooled Ni-Sn eutectic[J]. Metall. Trans., 1970, 1B: 1449
|
33 |
Wu Y, Piccone T J, Shiohara Y, et al. Dendritic growth of undercooled nickel-tin: Part III[J]. Metall. Trans., 1988, 19A: 1109
|
34 |
Jones B L. Growth mechanisms in undercooled eutectics[J]. Metall. Trans., 1971, 2: 2950
|
35 |
Tewari S N. Effect of undercooling on the microstructure of Ni-35 at. pct Mo (eutectic) and Ni-38 at. pct Mo (hypereutectic) alloys[J]. Metall. Trans., 1987, 18A: 525
|
36 |
Zhao S, Li J F, Liu L, et al. Eutectic growth from cellular to dendritic form in the undercooled Ag-Cu eutectic alloy melt[J]. J. Cryst. Growth, 2009, 311: 1387
|
37 |
Liu L, Li J F, Zhou Y H. Solidification interface morphology pattern in the undercooled Co-24.0at.% Sn eutectic melt[J]. Acta Mater., 2011, 59: 5558
|
38 |
Goetzinger R, Barth M, Herlach D M. Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni-Si, Co-Sb and Ni-Al-Ti alloys[J]. Acta Metall., 1998, 46: 1647
|
39 |
Lai C, Wang H F, Pu Q, et al. Phase selection and re-melting-induced anomalous eutectics in undercooled Ni-38 wt% Si alloys[J]. J. Mater. Sci., 2016, 51: 10990
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|