Please wait a minute...
金属学报  2025, Vol. 61 Issue (12): 1817-1828    DOI: 10.11900/0412.1961.2024.00133
  研究论文 本期目录 | 过刊浏览 |
堆垛层错能对CrMnFeCoNi系高熵合金动态力学性能与变形机制的影响
尹仕攀1, 孟泽宇1, 贺竞瑶1, 李泽洲1,2,3, 张帆1,2,3(), 程兴旺1,2,3()
1 北京理工大学 材料学院 北京 100081
2 北京理工大学 冲击环境材料技术国家级重点实验室 北京 100081
3 北京理工大学 唐山研究院 唐山 063000
Effect of Stacking Fault Energy on the Dynamic Mechanical Properties and Deformation Mechanisms of CrMnFeCoNi High-Entropy Alloys
YIN Shipan1, MENG Zeyu1, HE Jingyao1, LI Zezhou1,2,3, ZHANG Fan1,2,3(), CHENG Xingwang1,2,3()
1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
2 National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing Institute of Technology, Beijing 100081, China
3 Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, China
引用本文:

尹仕攀, 孟泽宇, 贺竞瑶, 李泽洲, 张帆, 程兴旺. 堆垛层错能对CrMnFeCoNi系高熵合金动态力学性能与变形机制的影响[J]. 金属学报, 2025, 61(12): 1817-1828.
Shipan YIN, Zeyu MENG, Jingyao HE, Zezhou LI, Fan ZHANG, Xingwang CHENG. Effect of Stacking Fault Energy on the Dynamic Mechanical Properties and Deformation Mechanisms of CrMnFeCoNi High-Entropy Alloys[J]. Acta Metall Sin, 2025, 61(12): 1817-1828.

全文: PDF(4361 KB)   HTML
摘要: 

为了探明堆垛层错能对CrMnFeCoNi系高熵合金动态力学响应行为的影响,本工作以具有不同堆垛层错能的等比例CrMnFeCoNi (35 mJ/m2)和非等比例Cr26Mn20Fe20Co20Ni14 (23 mJ/m2)高熵合金为研究对象,通过准静态和动态压缩性能测试,对比研究了不同堆垛层错能CrMnFeCoNi系高熵合金的动态力学性能特点;利用EBSD和TEM技术观察分析了变形组织,研究了不同堆垛层错能高熵合金的变形机制。结果表明,动态压缩条件下,CrMnFeCoNi和Cr26Mn20Fe20Co20Ni14高熵合金均表现出显著的应变率强化效应;准静态、动态压缩条件下,合金的流变应力、加工硬化指数和吸能能力均随着堆垛层错能的降低而增加。准静态变形时,CrMnFeCoNi高熵合金变形以位错滑移为主;Cr26Mn20Fe20Co20Ni14高熵合金以位错滑移和孪生为主。动态压缩变形时,孪生行为对变形的贡献增加,CrMnFeCoNi高熵合金的变形模式主要为位错滑移和孪生;堆垛层错能更低的Cr26Mn20Fe20Co20Ni14高熵合金在动态变形过程中除了位错滑移和孪生,还发生了孪晶交互作用与fcc-hcp相变以协调变形,该合金表现出更高的流变应力、加工硬化指数和吸能能力。可见,堆垛层错能的变化通过影响变形模式实现高熵合金动态力学性能的提升。

关键词 高熵合金堆垛层错能动态变形力学性能变形机制    
Abstract

CrMnFeCoNi high-entropy alloys (HEAs) have attracted considerable attention because of their excellent mechanical properties. Furthermore, these alloys exhibit high energy absorption characteristics under high-strain rate deformation for various deformation modes. The stacking fault energy (SFE) plays a crucial role in improving the deformation modes and mechanical properties. Only few studies have investigated the effect of SFE on the dynamic mechanical properties and deformation mode of CrMnFeCoNi series HEAs. In this work, the effect of SFE on the dynamic mechanical properties and deformation mechanism of CrMnFeCoNi HEAs were investigated through quasi-static and dynamic mechanical tests and microstructural analysis using CrMnFeCoNi (SFE of 35 mJ/m2) and Cr26Mn20Fe20Co20Ni14 (SFE of 23 mJ/m2) HEAs. Results indicate that CrMnFeCoNi and Cr26Mn20Fe20Co20Ni14 HEAs exhibit a strain-rate hardening effect under dynamic deformation. Furthermore, the flow stress, energy absorption ability, and work hardening index increase under static and dynamic conditions with the decrease in SFE. Under quasi-static compression, deformation occurs via dislocation gliding in CrMnFeCoNi, whereas deformation twinning is profound in Cr26Mn20Fe20Co20Ni14 HEA with low SFE; therefore, deformation is dominated by dislocation slip and twinning. The contribution of deformation twinning to the deformation strain increases with the increase in strain rates. In particular, deformation occurs via dislocation gliding and twinning in CrMnFeCoNi HEA. Apart from dislocation slip and twinning, the interaction of twins and the transition from fcc to hcp structures provide additional deformation modes to accommodate the plastic deformation of Cr26Mn20Fe20Co20Ni14 HEA and improve the mechanical properties and energy absorption of these alloys. This work demonstrates that the change in SFE will lead to different deformation modes for accommodating plastic strain, thereby improving the mechanical properties of HEAs.

Key wordshigh-entropy alloy    stacking fault energy    dynamic deformation    mechanical property    deformation mechanism
收稿日期: 2024-05-07     
ZTFLH:  TG113.25  
基金资助:国家自然科学基金项目(52271141);冲击环境材料技术国家级重点实验室基金项目(DZC2022-1)
通讯作者: 张帆,fanzhang@bit.edu.cn,主要从事极端加载条件下先进金属材料的设计、变形机制及应用研究; 程兴旺,chengxw@bit.edu.cn,主要从事新型毁伤与防护材料、材料动态力学行为和微结构演化机制研究
Corresponding author: ZHANG Fan, professor, Tel: 13581586228, E-mail: fanzhang@bit.edu.cn; CHENG Xingwang, professor, Tel: (010)68913951, E-mail: chengxw@bit.edu.cn
作者简介: 尹仕攀,男,1993年生,博士生
图1  CrMnFeCoNi和Cr26Mn20Fe20Co20Ni14高熵合金的EBSD像
图2  CrMnFeCoNi和Cr26Mn20Fe20Co20Ni14高熵合金的室温准静态压缩真应力-应变曲线和加工硬化率曲线
图3  CrMnFeCoNi和Cr26Mn20Fe20Co20Ni14高熵合金的动态压缩真应力-应变曲线
图4  变形应变率为1 × 10-3、2 × 103和5 × 103 s-1时CrMnFeCoNi和Cr26Mn20Fe20Co20Ni14高熵合金lnσ-lnε曲线
图5  CrMnFeCoNi和Cr26Mn20Fe20Co20Ni14高熵合金的lnσ-lnε˙曲线
图6  CrMnFeCoNi和Cr26Mn20Fe20Co20Ni14高熵合金的吸能特性
图7  1 × 10-3 s-1应变率加载条件下,真应变为0.25时,不同堆垛层错能高熵合金变形组织的EBSD分析
图8  1 × 10-3 s-1应变率加载条件下,真应变为0.25时,不同堆垛层错能高熵合金变形组织的TEM像、高分辨TEM (HRTEM)像及选区电子衍射(SAED)花样
图9  5 × 103 s-1应变率加载条件下,真应变为0.25时,CrMnFeCoNi和Cr26Mn20Fe20Co20Ni14高熵合金变形组织的EBSD分析
图10  5 × 103 s-1应变率加载条件下,真应变为0.25时,CrMnFeCoNi和Cr26Mn20Fe20Co20Ni14高熵合金的TEM分析
图11  应变率与堆垛层错能对CrMnFeCoNi系高熵合金变形模式的影响
[1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
[2] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
[3] Geantă V, Voiculescu I, Stefănoiu R, et al. Dynamic impact behaviour of high entropy alloys used in the military domain [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 374: 012041
[4] Zhao S T, Yin S, Liang X, et al. Deformation and failure of the CrCoNi medium-entropy alloy subjected to extreme shock loading [J]. Sci. Adv., 2023, 9: eadf8602
[5] Li Z Z, Zhao S T, Alotaibi S M, et al. Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2018, 151: 424
[6] Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
[7] Liu D, Yu Q, Kabra S, et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 Kelvin [J]. Science, 2022, 378: 978
[8] Fan Z D, Li L, Chen Z H, et al. Temperature-dependent yield stress of single crystals of non-equiatomic Cr-Mn-Fe-Co-Ni high-entropy alloys in the temperature range 10-1173 K [J]. Acta Mater., 2023, 246: 118712
[9] Naeem M, He H Y, Harjo S, et al. Temperature-dependent hardening contributions in CrFeCoNi high-entropy alloy [J]. Acta Mater., 2021, 221: 117371
[10] Qiao Y, Chen Y, Cao F H, et al. Dynamic behavior of CrMnFeCoNi high-entropy alloy in impact tension [J]. Int. J. Impact Eng., 2021, 158: 104008
[11] He J Y, Wang Q, Zhang H S, et al. Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy [J]. Sci. Bull., 2018, 63: 362
[12] An Z B, Mao S C, Liu Y N, et al. Inherent and multiple strain hardening imparting synergistic ultrahigh strength and ductility in a low stacking faulted heterogeneous high-entropy alloy [J]. Acta Mater., 2023, 243: 118516
[13] Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
[14] Zhang F, Ren Y, Pei Z R, et al. Cooperative dislocations for pressure-dependent sequential deformation of multi-principal element alloys under shock loading [J]. Acta Mater., 2024, 276: 120150
[15] Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
[16] Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
[17] Li Z M. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: Carbon content, microstructure, and compositional homogeneity effects on deformation behavior [J]. Acta Mater., 2019, 164: 400
[18] Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
[19] Zhang Z J, Sheng H W, Wang Z J, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nat. Commun., 2017, 8: 14390
[20] Miao J, Slone C E, Smith T M, et al. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy [J]. Acta Mater., 2017, 132: 35
[21] Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater. Sci., 1995, 39: 1
[22] Wagner C, Laplanche G. Effects of stacking fault energy and temperature on grain boundary strengthening, intrinsic lattice strength and deformation mechanisms in CrMnFeCoNi high-entropy alloys with different Cr/Ni ratios [J]. Acta Mater., 2023, 244: 118541
[23] Moon J, Qi Y S, Tabachnikova E, et al. Microstructure and mechanical properties of high-entropy alloy Co20Cr26Fe20Mn20Ni14 processed by high-pressure torsion at 77 K and 300 K [J]. Sci. Rep., 2018, 8: 11074
[24] Moon J, Qi Y S, Tabachnikova E, et al. Deformation-induced phase transformation of Co20Cr26Fe20Mn20Ni14 high-entropy alloy during high-pressure torsion at 77 K [J]. Mater. Lett., 2017, 202: 86
[25] Gao X Z, Lu Y P, Liu J Z, et al. Extraordinary ductility and strain hardening of Cr26Mn20Fe20Co20Ni14 TWIP high-entropy alloy by cooperative planar slipping and twinning [J]. Materialia, 2019, 8: 100485
[26] Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J. Understanding martensite and twin formation in austenitic steels: A model describing TRIP and TWIP effects [J]. Acta Mater., 2017, 128: 120
[27] Slone C E, Chakraborty S, Miao J, et al. Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy [J]. Acta Mater., 2018, 158: 38
[28] Zhang T W, Ma S G, Zhao D, et al. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling [J]. Int. J. Plast., 2020, 124: 226
[29] Wang K, Jin X, Jiao Z M, et al. Mechanical behaviors and deformation constitutive equations of CrFeNi medium-entropy alloys under tensile conditions from 77 K to 1073 K [J]. Acta Metall. Sin., 2023, 59: 277
[29] 王 凯, 晋 玺, 焦志明 等. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程 [J]. 金属学报, 2023, 59: 277
[30] Wu X L, Yang M X, Jiang P, et al. Deformation nanotwins suppress shear banding during impact test of CrCoNi medium-entropy alloy [J]. Scr. Mater., 2020, 178: 452
[31] Chen J J, Ding Y T, Ma Y J, et al. Molecular dynamics simulation of tensile deformation behavior of monocrystalline Ni and its alloys with different stacking fault energies [J]. Rare Met. Mater. Eng., 2023, 52: 3186
[31] 陈建军, 丁雨田, 马元俊 等. 分子动力学模拟不同层错能单晶Ni及其合金拉伸变形行为 [J]. 稀有金属材料与工程, 2023, 52: 3186
[32] An X H, Wu S D, Zhang Z F. Influnece of stacking fault energy on the microstructures, tensile and fatigue properties of nanostructured Cu-Al alloys [J]. Acta Metall. Sin., 2014, 50: 191
[32] 安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响 [J]. 金属学报, 2014, 50: 191
[33] Tian C G, Tao X P, Xu L, et al. Effects of stacking fault energy and temperature on creep performance of Ni-based alloy with different Co contents [J]. Rare Met. Mater. Eng., 2021, 50: 3532
[33] 田成刚, 陶稀鹏, 徐 玲 等. 层错能和温度对不同Co含量的镍基高温合金蠕变性能的影响 [J]. 稀有金属材料与工程, 2021, 50: 3532
[34] Zhang Z F, Li K Q, Cai T, et al. Effects of stacking fault energy on the deformation mechanisms and mechanical properties of face-centered cubic metals [J]. Acta Metall. Sin., 2023, 59: 467
[34] 张哲峰, 李克强, 蔡 拓 等. 层错能对面心立方金属形变机制与力学性能的影响 [J]. 金属学报, 2023, 59: 467
[35] Wagner C, Ferrari A, Schreuer J, et al. Effects of Cr/Ni ratio on physical properties of Cr-Mn-Fe-Co-Ni high-entropy alloys [J]. Acta Mater., 2022, 227: 117693
[36] Meyers M A. Dynamic Behavior of Materials [M]. New York: John Wiley & Sons, 1994: 189
[37] Hollomon J H. Tensile Deformation [J]. Trans. Metall. Soc. AIME, 1945, 162: 268
[38] Zackay V F. High-Strength Materials [M]. New York: John Wiley & Sons. Inc., 1965: 436
[39] Xiao J W, Wu N, Ojo O, et al. Stacking fault and transformation-induced plasticity in nanocrystalline high-entropy alloys [J]. J. Mater. Res., 2021, 36: 2705
[40] Liu L X, Pan J, Zhang C, et al. Achieving high strength and ductility in a 3D-printed high entropy alloy by cooperative planar slipping and stacking fault [J]. Mater. Sci. Eng., 2022, A843: 143106
[41] Liu S F, Wu Y, Wang H T, et al. Stacking fault energy of face-centered-cubic high entropy alloys [J]. Intermetallics, 2018, 93: 269
[42] Gutierrez-Urrutia I, Raabe D. Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt.% Mn-0.6 wt.% C TWIP steel observed by electron channeling contrast imaging [J]. Acta Mater., 2011, 59: 6449
[43] Beladi H, Timokhina I B, Estrin Y, et al. Orientation dependence of twinning and strain hardening behaviour of a high manganese twinning induced plasticity steel with polycrystalline structure [J]. Acta Mater., 2011, 59: 7787
[44] Williams J C, Baggerly R G, Paton N E. Deformation behavior of HCP Ti-Al alloy single crystals [J]. Metall. Mater. Trans., 2002, 33A: 837
[45] Huang D, Zhuang Y X, Wang C H. Advanced mechanical properties obtained via accurately tailoring stacking fault energy in Co-rich and Ni-depleted Co x Cr33Ni67 - x medium-entropy alloys [J]. Scr. Mater., 2022, 207: 114269
[46] Jiang W, Gao X Z, Guo Y Z, et al. Dynamic impact behavior and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy [J]. Mater. Sci. Eng., 2021, A824: 141858
[47] De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels [J]. Acta Mater., 2018, 142: 283
[48] Choi J H, Jo M C, Lee H, et al. Cu addition effects on TRIP to TWIP transition and tensile property improvement of ultra-high-strength austenitic high-Mn steels [J]. Acta Mater., 2019, 166: 246
[49] Liu G Y, Gu J, Ni S, et al. Microstructural evolution of Cu-Al alloys subjected to multi-axial compression [J]. Mater. Charact., 2015, 103: 107
[50] Xiao G H, Tao N R, Lu K. Microstructures and mechanical properties of a Cu-Zn alloy subjected to cryogenic dynamic plastic deformation [J]. Mater. Sci. Eng., 2009, A513-514: 13
[51] Xu Y J, Du K, Cui C Y, et al. Deformation twinning with zero macroscopic strain in a coarse-grained Ni-Co-based superalloy [J]. Scr. Mater., 2014, 77: 71
[1] 张天宇, 张鹏, 肖娜, 王小海, 刘国强, 杨志刚, 张弛. 奥氏体化温度对2 GPa超高强钢显微组织和力学性能的影响[J]. 金属学报, 2025, 61(9): 1353-1363.
[2] 王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
[3] 吴志勇, 邵徽凡, 蔡长春, 曾敏, 王振军, 王艳丽, 陈雷, 熊博文. 斜纹碳布缝合织物结构增强铝基复合材料的高温拉伸及断裂行为[J]. 金属学报, 2025, 61(9): 1387-1402.
[4] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[5] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 谷金波. 喷射成形工艺对M3高速钢碳化物特征及力学性能的影响[J]. 金属学报, 2025, 61(8): 1229-1244.
[6] 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
[7] 葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
[8] 钦兰云, 张健, 伊俊振, 崔岩峰, 杨光, 王超. 固溶时效对激光沉积修复ZM6合金组织及力学性能的影响[J]. 金属学报, 2025, 61(6): 875-886.
[9] 李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
[10] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[11] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
[12] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[13] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[14] 蔡正清, 尹大伟, 杨靓, 王文祥, 王飞龙, 温永清, 马明臻. Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响[J]. 金属学报, 2025, 61(4): 572-582.
[15] 邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.