|
|
|
| 堆垛层错能对CrMnFeCoNi系高熵合金动态力学性能与变形机制的影响 |
尹仕攀1, 孟泽宇1, 贺竞瑶1, 李泽洲1,2,3, 张帆1,2,3( ), 程兴旺1,2,3( ) |
1 北京理工大学 材料学院 北京 100081 2 北京理工大学 冲击环境材料技术国家级重点实验室 北京 100081 3 北京理工大学 唐山研究院 唐山 063000 |
|
| Effect of Stacking Fault Energy on the Dynamic Mechanical Properties and Deformation Mechanisms of CrMnFeCoNi High-Entropy Alloys |
YIN Shipan1, MENG Zeyu1, HE Jingyao1, LI Zezhou1,2,3, ZHANG Fan1,2,3( ), CHENG Xingwang1,2,3( ) |
1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China 2 National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing Institute of Technology, Beijing 100081, China 3 Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, China |
引用本文:
尹仕攀, 孟泽宇, 贺竞瑶, 李泽洲, 张帆, 程兴旺. 堆垛层错能对CrMnFeCoNi系高熵合金动态力学性能与变形机制的影响[J]. 金属学报, 2025, 61(12): 1817-1828.
Shipan YIN,
Zeyu MENG,
Jingyao HE,
Zezhou LI,
Fan ZHANG,
Xingwang CHENG.
Effect of Stacking Fault Energy on the Dynamic Mechanical Properties and Deformation Mechanisms of CrMnFeCoNi High-Entropy Alloys[J]. Acta Metall Sin, 2025, 61(12): 1817-1828.
| [1] |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
| [2] |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
| [3] |
Geantă V, Voiculescu I, Stefănoiu R, et al. Dynamic impact behaviour of high entropy alloys used in the military domain [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 374: 012041
|
| [4] |
Zhao S T, Yin S, Liang X, et al. Deformation and failure of the CrCoNi medium-entropy alloy subjected to extreme shock loading [J]. Sci. Adv., 2023, 9: eadf8602
|
| [5] |
Li Z Z, Zhao S T, Alotaibi S M, et al. Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2018, 151: 424
|
| [6] |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
|
| [7] |
Liu D, Yu Q, Kabra S, et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 Kelvin [J]. Science, 2022, 378: 978
|
| [8] |
Fan Z D, Li L, Chen Z H, et al. Temperature-dependent yield stress of single crystals of non-equiatomic Cr-Mn-Fe-Co-Ni high-entropy alloys in the temperature range 10-1173 K [J]. Acta Mater., 2023, 246: 118712
|
| [9] |
Naeem M, He H Y, Harjo S, et al. Temperature-dependent hardening contributions in CrFeCoNi high-entropy alloy [J]. Acta Mater., 2021, 221: 117371
|
| [10] |
Qiao Y, Chen Y, Cao F H, et al. Dynamic behavior of CrMnFeCoNi high-entropy alloy in impact tension [J]. Int. J. Impact Eng., 2021, 158: 104008
|
| [11] |
He J Y, Wang Q, Zhang H S, et al. Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy [J]. Sci. Bull., 2018, 63: 362
|
| [12] |
An Z B, Mao S C, Liu Y N, et al. Inherent and multiple strain hardening imparting synergistic ultrahigh strength and ductility in a low stacking faulted heterogeneous high-entropy alloy [J]. Acta Mater., 2023, 243: 118516
|
| [13] |
Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
|
| [14] |
Zhang F, Ren Y, Pei Z R, et al. Cooperative dislocations for pressure-dependent sequential deformation of multi-principal element alloys under shock loading [J]. Acta Mater., 2024, 276: 120150
|
| [15] |
Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
|
| [16] |
Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
|
| [17] |
Li Z M. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: Carbon content, microstructure, and compositional homogeneity effects on deformation behavior [J]. Acta Mater., 2019, 164: 400
|
| [18] |
Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
|
| [19] |
Zhang Z J, Sheng H W, Wang Z J, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nat. Commun., 2017, 8: 14390
|
| [20] |
Miao J, Slone C E, Smith T M, et al. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy [J]. Acta Mater., 2017, 132: 35
|
| [21] |
Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater. Sci., 1995, 39: 1
|
| [22] |
Wagner C, Laplanche G. Effects of stacking fault energy and temperature on grain boundary strengthening, intrinsic lattice strength and deformation mechanisms in CrMnFeCoNi high-entropy alloys with different Cr/Ni ratios [J]. Acta Mater., 2023, 244: 118541
|
| [23] |
Moon J, Qi Y S, Tabachnikova E, et al. Microstructure and mechanical properties of high-entropy alloy Co20Cr26Fe20Mn20Ni14 processed by high-pressure torsion at 77 K and 300 K [J]. Sci. Rep., 2018, 8: 11074
|
| [24] |
Moon J, Qi Y S, Tabachnikova E, et al. Deformation-induced phase transformation of Co20Cr26Fe20Mn20Ni14 high-entropy alloy during high-pressure torsion at 77 K [J]. Mater. Lett., 2017, 202: 86
|
| [25] |
Gao X Z, Lu Y P, Liu J Z, et al. Extraordinary ductility and strain hardening of Cr26Mn20Fe20Co20Ni14 TWIP high-entropy alloy by cooperative planar slipping and twinning [J]. Materialia, 2019, 8: 100485
|
| [26] |
Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J. Understanding martensite and twin formation in austenitic steels: A model describing TRIP and TWIP effects [J]. Acta Mater., 2017, 128: 120
|
| [27] |
Slone C E, Chakraborty S, Miao J, et al. Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy [J]. Acta Mater., 2018, 158: 38
|
| [28] |
Zhang T W, Ma S G, Zhao D, et al. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling [J]. Int. J. Plast., 2020, 124: 226
|
| [29] |
Wang K, Jin X, Jiao Z M, et al. Mechanical behaviors and deformation constitutive equations of CrFeNi medium-entropy alloys under tensile conditions from 77 K to 1073 K [J]. Acta Metall. Sin., 2023, 59: 277
|
| [29] |
王 凯, 晋 玺, 焦志明 等. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程 [J]. 金属学报, 2023, 59: 277
|
| [30] |
Wu X L, Yang M X, Jiang P, et al. Deformation nanotwins suppress shear banding during impact test of CrCoNi medium-entropy alloy [J]. Scr. Mater., 2020, 178: 452
|
| [31] |
Chen J J, Ding Y T, Ma Y J, et al. Molecular dynamics simulation of tensile deformation behavior of monocrystalline Ni and its alloys with different stacking fault energies [J]. Rare Met. Mater. Eng., 2023, 52: 3186
|
| [31] |
陈建军, 丁雨田, 马元俊 等. 分子动力学模拟不同层错能单晶Ni及其合金拉伸变形行为 [J]. 稀有金属材料与工程, 2023, 52: 3186
|
| [32] |
An X H, Wu S D, Zhang Z F. Influnece of stacking fault energy on the microstructures, tensile and fatigue properties of nanostructured Cu-Al alloys [J]. Acta Metall. Sin., 2014, 50: 191
|
| [32] |
安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响 [J]. 金属学报, 2014, 50: 191
|
| [33] |
Tian C G, Tao X P, Xu L, et al. Effects of stacking fault energy and temperature on creep performance of Ni-based alloy with different Co contents [J]. Rare Met. Mater. Eng., 2021, 50: 3532
|
| [33] |
田成刚, 陶稀鹏, 徐 玲 等. 层错能和温度对不同Co含量的镍基高温合金蠕变性能的影响 [J]. 稀有金属材料与工程, 2021, 50: 3532
|
| [34] |
Zhang Z F, Li K Q, Cai T, et al. Effects of stacking fault energy on the deformation mechanisms and mechanical properties of face-centered cubic metals [J]. Acta Metall. Sin., 2023, 59: 467
|
| [34] |
张哲峰, 李克强, 蔡 拓 等. 层错能对面心立方金属形变机制与力学性能的影响 [J]. 金属学报, 2023, 59: 467
|
| [35] |
Wagner C, Ferrari A, Schreuer J, et al. Effects of Cr/Ni ratio on physical properties of Cr-Mn-Fe-Co-Ni high-entropy alloys [J]. Acta Mater., 2022, 227: 117693
|
| [36] |
Meyers M A. Dynamic Behavior of Materials [M]. New York: John Wiley & Sons, 1994: 189
|
| [37] |
Hollomon J H. Tensile Deformation [J]. Trans. Metall. Soc. AIME, 1945, 162: 268
|
| [38] |
Zackay V F. High-Strength Materials [M]. New York: John Wiley & Sons. Inc., 1965: 436
|
| [39] |
Xiao J W, Wu N, Ojo O, et al. Stacking fault and transformation-induced plasticity in nanocrystalline high-entropy alloys [J]. J. Mater. Res., 2021, 36: 2705
|
| [40] |
Liu L X, Pan J, Zhang C, et al. Achieving high strength and ductility in a 3D-printed high entropy alloy by cooperative planar slipping and stacking fault [J]. Mater. Sci. Eng., 2022, A843: 143106
|
| [41] |
Liu S F, Wu Y, Wang H T, et al. Stacking fault energy of face-centered-cubic high entropy alloys [J]. Intermetallics, 2018, 93: 269
|
| [42] |
Gutierrez-Urrutia I, Raabe D. Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt.% Mn-0.6 wt.% C TWIP steel observed by electron channeling contrast imaging [J]. Acta Mater., 2011, 59: 6449
|
| [43] |
Beladi H, Timokhina I B, Estrin Y, et al. Orientation dependence of twinning and strain hardening behaviour of a high manganese twinning induced plasticity steel with polycrystalline structure [J]. Acta Mater., 2011, 59: 7787
|
| [44] |
Williams J C, Baggerly R G, Paton N E. Deformation behavior of HCP Ti-Al alloy single crystals [J]. Metall. Mater. Trans., 2002, 33A: 837
|
| [45] |
Huang D, Zhuang Y X, Wang C H. Advanced mechanical properties obtained via accurately tailoring stacking fault energy in Co-rich and Ni-depleted Co x Cr33Ni67 - x medium-entropy alloys [J]. Scr. Mater., 2022, 207: 114269
|
| [46] |
Jiang W, Gao X Z, Guo Y Z, et al. Dynamic impact behavior and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy [J]. Mater. Sci. Eng., 2021, A824: 141858
|
| [47] |
De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels [J]. Acta Mater., 2018, 142: 283
|
| [48] |
Choi J H, Jo M C, Lee H, et al. Cu addition effects on TRIP to TWIP transition and tensile property improvement of ultra-high-strength austenitic high-Mn steels [J]. Acta Mater., 2019, 166: 246
|
| [49] |
Liu G Y, Gu J, Ni S, et al. Microstructural evolution of Cu-Al alloys subjected to multi-axial compression [J]. Mater. Charact., 2015, 103: 107
|
| [50] |
Xiao G H, Tao N R, Lu K. Microstructures and mechanical properties of a Cu-Zn alloy subjected to cryogenic dynamic plastic deformation [J]. Mater. Sci. Eng., 2009, A513-514: 13
|
| [51] |
Xu Y J, Du K, Cui C Y, et al. Deformation twinning with zero macroscopic strain in a coarse-grained Ni-Co-based superalloy [J]. Scr. Mater., 2014, 77: 71
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|