Please wait a minute...
金属学报  2024, Vol. 60 Issue (6): 743-759    DOI: 10.11900/0412.1961.2023.00393
  综述 本期目录 | 过刊浏览 |
Mg-Zn系合金热裂行为的研究进展
王峰1,2,3(), 白盛巍1,2, 王志1,2, 杜旭东1,2(), 周乐1,2, 毛萍莉1,2, 魏子淇1,2, 李瑾伟3
1 沈阳工业大学 材料科学与工程学院 沈阳 110870
2 沈阳工业大学 辽宁省镁合金及成形技术重点实验室 沈阳 110870
3 辽宁帝德科技有限公司 辽宁省汽车轻量化专业技术创新中心 铁岭 112611
Research Progress on Hot Tearing Behavior of Mg-Zn Series Alloys
WANG Feng1,2,3(), BAI Shengwei1,2, WANG Zhi1,2, DU Xudong1,2(), ZHOU Le1,2, MAO Pingli1,2, WEI Ziqi1,2, LI Jinwei3
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Key Laboratory of Magnesium Alloys and the Processing Technology of Liaoning Province, Shenyang University of Technology, Shenyang 110870, China
3 Liaoning Automobile Lightweight Technology Professional Innovation Center, Liaoning Dide Technology Co. Ltd., Tieling 112611, China
引用本文:

王峰, 白盛巍, 王志, 杜旭东, 周乐, 毛萍莉, 魏子淇, 李瑾伟. Mg-Zn系合金热裂行为的研究进展[J]. 金属学报, 2024, 60(6): 743-759.
Feng WANG, Shengwei BAI, Zhi WANG, Xudong DU, Le ZHOU, Pingli MAO, Ziqi WEI, Jinwei LI. Research Progress on Hot Tearing Behavior of Mg-Zn Series Alloys[J]. Acta Metall Sin, 2024, 60(6): 743-759.

全文: PDF(2403 KB)   HTML
摘要: 

Mg-Zn系合金是镁合金中重要的合金体系之一,因其具有丰富的相组成、突出的变形能力和时效强化效果而备受关注,在航空航天、汽车工业及生物医疗等领域显示出较大的应用潜力。但是Mg-Zn系合金凝固温度区间宽、收缩量大,导致合金存在较大的热裂敏感性,一定程度上限制了该系合金的应用。因此,开展Mg-Zn系合金热裂行为的研究具有重要意义。本文归纳总结了热裂理论、合金元素及铸造工艺参数对Mg-Zn系合金热裂敏感性的影响,以及Mg-Zn系合金热裂行为数值模拟的研究现状;揭示了Mg-Zn系合金微观组织及凝固特性参数对热裂敏感性的作用机理,并提出了目前镁合金热裂行为研究的不足与建议,以期为Mg-Zn系合金的设计及应用提供指导。

关键词 Mg-Zn系合金热裂敏感性显微组织工艺参数    
Abstract

Mg-Zn series alloys, an important alloy system among magnesium alloys, have garnered considerable attention due to their rich phase composition, outstanding deformability, and aging strengthening effects. These alloys demonstrate great potential for applications in the aerospace, automotive, and biomedical industries. However, the wide solidification temperature range and large shrinkage of these alloys render them largely susceptible to hot tearing, limiting their applications to a certain extent. Thus, investigating the hot tearing behavior of Mg-Zn series alloys is important. In this paper, a comprehensive summary of theories pertaining to hot tearing, the effects of alloying elements and casting process parameters on the susceptibility of Mg-Zn series alloys to hot tearing, and the current status of research on the numerical simulation of this phenomenon are presented. Furthermore, this article discusses the influence of microstructure and solidification parameters of Mg-Zn series alloys on their hot tearing susceptibility and proposes limitations and suggestions for the current research on the hot tearing behavior of magnesium alloys to guide the design and application of Mg-Zn series alloys.

Key wordsMg-Zn series alloys    hot tearing susceptibility    microstructure    processing parameter
收稿日期: 2023-09-19     
ZTFLH:  TG146.2  
基金资助:辽宁省教育厅高等学校基本科研项目(重点攻关项目)(JYTZD2023108);辽宁省高水平创新团队项目(XLYC-1908006);辽宁省自然科学基金博士启动项目(2022-BS-179);辽宁省教育厅面上项目(LJKMZ20220462)
通讯作者: 王 峰,wf9709@126.com,主要从事高性能轻质合金及轻量化技术研究;
杜旭东,dxd9297@126.com,主要从事高性能低热裂敏感性镁合金研究;
Corresponding author: WANG Feng, professor, Tel: 15002424621, E-mail: wf9709@126.com;
DU Xudong, Tel: 13940206929, E-mail: dxd9297@126.com
作者简介: 王 峰,男,1978年生,教授,博士
图1  合金凝固过程重要参数与阶段[10]
ElementMaximum solid solutionMain secondary phase formed by
Mass fraction / %Atomic fraction / %alloying element in Mg-Zn alloy
Y12.5[27]3.75[35]

I (Mg3Zn6Y), W (Mg3Zn3Y2),

LPSO (Mg12YZn)

Nd~3[28]~1[35]Mg12Nd, T-phase ((MgZn)92Nd8)
Gd23.5[29]4.53[35]W (Mg3Zn3Gd2), I (Mg3Zn6Gd)
Al12.7[30]11.8[35]Mg17Al12
Zr3.8[31]1.0[36]-
Ca1.35[32]0.82[35]Ca2Mg6Zn3
Cu0.013[33]-MgZnCu
Zn6.2[34]2.4[35]MgZn, MgZn2, Mg7Zn3
Sn14.5[26]3.35[26]MgZnSn
表1  常见合金元素在Mg中的最大固溶度[26~36]

Alloy

mass fraction / %

Alloy with peak HTS mass fraction / %

Alloy with valley HTS

mass fraction / %

Processing parameter
Tmold / oCTpour / oC
Mg-1.5Zn-xY (x = 0.2, 2, 4)[37]Mg-1.5Zn-0.2YMg-1.5Zn-4Y250750

Mg-4.5Zn-xY (x = 0, 0.4, 0.9, 2)[38]

Mg-4.5Zn-0.4Y

Mg-4.5Zn-0.9Y

Mg-4.5Zn-2Y250750
Mg-4.5Zn-0.9Y

Mg-4.5Zn,

Mg-4.5Zn-2Y

450750
Mg-xZn-2xY (x = 1, 1.67, 2.67)[39]Mg-1.67Zn-3.34YMg-2.67Zn-5.34Y250720
Mg-4.5Zn-xY-0.5Zr (x = 0.5, 1, 2, 4, 6)[40]Mg-4.5Zn-1Y-0.5ZrMg-4.5Zn-6Y-0.5Zr200720
Mg-1Zn-xY (x = 1, 1.33, 2)[41]Mg-1Zn-1YMg-1Zn-1.33Y250750
Mg-1Zn-xY (x = 1, 2, 3)[42]Mg-1Zn-1YMg-1Zn-3Y250750
Mg-6.5Zn-xY-0.5Zr (x = 1, 2, 4, 6)[43]Mg-6.5Zn-6Y-0.5ZrMg-6.5Zn-2Y-0.5Zr200720

Mg-5(Zn + Y)-0.5Zr (Mg-2.5Zn-2.5Y-0.5Zr,

Mg-3Zn-2Y-0.5Zr, Mg-3.75Zn-1.25Y-0.5Zr,

Mg-4.29Zn-0.71Y-0.5Zr)[44]

Mg-3.75Zn-1.25Y-0.5Zr

Mg-2.5Zn-2.5Y-0.5Zr

200

700

Mg-xZn-0.5Y-0.5Zr (x = 1.5, 2.5, 3.5, 4.5)[45]Mg-1.5Zn-0.5Y-0.5ZrMg-4.5Zn-0.5Y-0.5Zr280700
Mg-xZn-2Y (x = 0, 0.5, 1.5, 4.5)[46]Mg-1.5Zn-2YMg-2Y250750
Mg-xZn-4Y-0.5Zr (x = 0, 0.5, 1.5, 3)[47]Mg-1.5Zn-4Y-0.5ZrMg-4Y-0.5Zr200720
表2  Mg-Zn-Y系合金热裂敏感性的研究结果[37~47]

Alloy

mass fraction / %

Alloy with peak HTS mass fraction / %Alloy with valley HTS mass fraction / %Processing parameter
Tmold / oCTpour / oC
Mg-6Zn-xCu-0.6Zr (x = 0, 0.5, 1, 2, 3)[66]Mg-6Zn-0.6ZrMg-6Zn-3Cu-0.6Zr250750
Mg-7Zn-xCu-0.6Zr (x = 0, 1, 2, 3)[67]Mg-7Zn-0.6ZrMg-7Zn-3Cu-0.6Zr250700
表3  Mg-Zn-Cu系合金热裂敏感性的研究结果[66,67]

Alloy mass fraction / %

Alloy with peak HTS

mass fraction / %

Alloy with valley HTS

mass fraction / %

Processing parameter
Tmold / oCTpour / oC
Mg-xZn-0.5Ca (x = 0, 2, 4, 6)[61]-Mg-6Zn-0.5Ca250750
Mg-4Zn-0.5CaMg-0.5Ca450750
Mg-xZn-2Ca (x = 0, 0.5, 1.5, 4, 6)[70]

Mg-0.5Zn-2Ca,

Mg-1.5Zn-2Ca

Mg-6Zn-2Ca250750
Mg-1.5Zn-2Ca

Mg-2Ca,

Mg-6Zn-2Ca

450750
Mg-1.5Zn-xCa (x =1, 2, 3, 4)[71]Mg-1.5Zn-1CaMg-1.5Zn-4Ca200720
Mg-4Zn-xCa-0.3Zr (x = 0.5, 1,1.5, 2)[72]Mg-4Zn-0.5Ca-0.3ZrMg-4Zn-1.5Ca-0.3Zr270700
表4  Mg-Zn-Ca系合金热裂敏感性的研究结果[61,70~72]

Alloy mass fraction / %

Secondary phase in alloy

Most effective secondary phase reducing the HTS of the alloy

Mg-4.5Zn-xY-yNd (x + y = 6, x = 0, 1, 3, 6)[79]

I (Mg3Zn6Y, Mg3Zn6(Y, Nd)),

W (Mg3Zn3Y2, Mg3Zn3(Y, Nd)2),

T ((MgZn)92Nd8)

W (Mg3Zn3(Y, Nd)2)

Mg-xZn-7Gd-5Y-0.5Zr (x = 0, 3, 7, 13)[80]

Mg5(Gd, Y),

LPSO (Mg12Zn(Gd, Y)),

W (Mg3Zn3(Gd,Y)2),

I (Mg3Zn6(Gd,Y))

Mg3Zn3(Gd, Y)2

Mg-6Zn-1Cu-xY-0.6Zr (x = 0, 1, 2, 3)[81]

MgZnCu, I (Mg3YZn6), MgZn2,

W (Mg3Y2Zn3, Mg3(Zn, Cu)3Y2)

W (Mg3(Zn, Cu)3Y2)
Mg-4Zn-xSn-1Ca (x = 0, 0.5, 1, 2)[83]CaMgSn, Ca2Mg6Zn3Ca2Mg6Zn3
Mg-0.5Zn-4Al-(0.5%-2.0%)Ca-(0.5%-2.0%)La[85]Al11La3, Al2CaAl2Ca

Mg-2Zn-(3 + 0.5x)Y-xAl (x = 0, 2, 3; atomic fraction, %)[86],

Mg-2Zn-3Y-xAl (x = 0, 0.5, 1, 2)[87]

Al2Y + Al3Y, W (Mg3Y2Zn3),

LPSO (Mg12ZnY)

Al2Y
表5  复合加入合金元素后Mg-Zn-X-Y(-Z)合金中的第二相及对合金热裂敏感性降低效果最优的第二相[79~81,83,85~87]
图2  外加交变磁场的“T”型热裂测试装置示意图[96]
图3  无磁场及低频交变磁场处理后Mg-4Zn-1.5Ca合金热裂纹部位的SEM像、组织形貌[95]与热裂纹补缩示意图[96]
图4  低频交变磁场处理下MgZnCu相团聚和球化示意图,及MgZnCu相的SEM像[94]
图5  Mg-1Zn-xY[42]合金及Mg-xZn-2Y[46]合金热裂纹宏观照片及数值模拟结果云图
PhaseConditionEffect
High melting point eutectic phaseLow volume

Increasing the non-uniform nucleation site;

refining the grains;

increasing the content of the liquid film subjected to shrinkage stress/strain;
reducing the HTS of the alloy
High volumeBlocking the feeding channel;
reducing the feeding efficiency of alloy at the end of solidification;
increasing the HTS of the alloy

Low melting point eutectic phase

Thci < TLMPE

Liquid film theory and intergranular bridging theory:

The low melting eutectic phase precipitated before hot tearing initiation acts as “bridges” to fix the grain boundary on both sides. Under the action of surface tension and bridge, the intergranular bonding force improved

ThciTLMPE

Liquid film theory:

The intergranular binding force is only provided by the surface tension of the liquid film covering the dendrite surface

表6  第二相种类对镁合金热裂行为的作用机理
图6  几种不同合金的凝固温度区间与合金热裂敏感性间的关系[44,47,95]
图7  Y[43]、Al[76]、Ca[72]元素对Mg-Zn二元合金凝固温度区间及热裂敏感性的影响
图8  合金凝固过程示意图
1 Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magnes. Alloy., 2020, 8: 1
2 Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020 [J]. J. Magnes. Alloy., 2021, 9: 705
3 Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
3 吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
4 Bassan M, Buonomo B, Cavallari G, et al. Measurement of the thermal expansion coefficient of an Al-Mg alloy at ultra-low temperatures [J]. Int. J. Mod. Phys., 2013, 27B: 1350119
5 Mao P L, Wang F, Liu Z, Thermodynamics and Phase Diagrams of Magnesium Alloys [M]. Beijing: China Machine Press, 2015: 24
5 毛萍莉, 王 峰, 刘 正. 镁合金热力学及相图 [M]. 北京: 机械工业出版社, 2015: 24
6 Eskin D G, Katgerman L, Suyitno, et al. Contraction of aluminum alloys during and after solidification [J]. Metall. Mater. Trans., 2004, 35A: 1325
7 Clyne T W, Davies G J. The influence of composition on solidification cracking susceptibility in binary alloys systems [J]. Br. Foundryman, 1981, 74(4): 65
8 Zhou L. Investigations on hot tearing susceptibility and mechanism for Mg-Zn-(Al) alloys [D]. Shenyang: Shenyang University of Technology, 2011
8 周 乐. Mg-Zn-(Al)系合金热裂敏感性及其微观机理研究 [D]. 沈阳: 沈阳工业大学, 2011
9 Ramon J, Basu R, Voort G V, et al. A comprehensive study on solidification (hot) cracking in austenitic stainless steel welds from a microstructural approach [J]. Int. J. Pressure Vessels Pip., 2021, 194: 104560
10 Du X D. Solidification behavior and hot tearing mechanism of Mg-Al-Ca series alloys [D]. Shenyang: Shenyang University of Technology, 2023
10 杜旭东. Mg-Al-Ca系合金凝固行为及热裂机理研究 [D]. 沈阳: 沈阳工业大学, 2023
11 Vero J. The hot-shortness of aluminium alloys [J]. Met. Ind., 1936, 48: 431, 442
12 Singer A R E, Cottrell S A. Properties of the Al-Si Alloys at temperatures in the region of the solidus [J]. J. Inst. Met., 1946, 73: 33
13 Zhu Q. Study on the relationship between mushy zone strength and hot cracking of Mg-Zn based magnesium alloys [D]. Shenyang: Northeastern University, 2016
13 朱 强. Mg-Zn基镁合金的糊状区强度和热裂的关系研究 [D]. 沈阳: 东北大学, 2016
14 Sigworth G K. Hot tearing of metals [J]. Trans. Am. Foundrymen's Soc., 1996, 104: 1053
15 Wray P J. The geometry of two-phase aggregates in which the shape of the second phase is determined by its dihedral angle [J]. Acta Metall., 1976, 24: 125
16 Saveiko V N. Theory of hot tearing [J]. Russ. Cast. Prod., 1961, 11: 453
17 Campbell J. Castings [M]. 2nd Ed., Oxford: Butterworth-Heinemann, 2003: 253
18 Wang Y S, Wang Q D, Ding W J, et al. Research development of hot tear mechanism for cast alloys [J]. Special Cast. Nonferrous Alloys, 2000, 12(2): 48
18 王业双, 王渠东, 丁文江 等. 合金的热裂机理及其研究进展 [J]. 特种铸造及有色合金, 2000, 12(2): 48
19 Pellini W S. Strain theory of hot tearing [J]. Foundry, 1952, 80: 125
20 Clyne T W, Wolf M, Kurz W. The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting [J]. Metall. Trans., 1982, 13B: 259
21 Clyne T W, Davies G J. Comparison between experimental data and theoretical predictions relating to dependence of solidification cracking on composition [A]. Procedings of the Conference on Solidification and Casting of Metals [M]. London: Metals Society, 1979: 274
22 Zhang S B. Investigations on testing methods and hot tearing susceptibility on Mg-Zn-Y alloys [D]. Shenyang: Shenyang University of Technology, 2014
22 张斯博. Mg-Zn-Y合金热裂行为测试研究 [D]. 沈阳: 沈阳工业大学, 2014
23 Li X X, Liu S M, Liu Z, et al. Influence of Nd on hot tearing susceptibility and mechanism of Mg-Zn-Y-Zr alloys [J]. J. Mater. Eng. Perform., 2020, 29: 6714
24 Ding H, Fu H Z, Liu Z Y, et al. Compensation of Solidification contraction and hot cracking tendency of alloys [J]. Acta Metall. Sin., 1997, 33: 921
24 丁 浩, 傅恒志, 刘忠元 等. 凝固收缩补偿与合金的热裂倾向 [J]. 金属学报, 1997, 33: 921
25 M'hamdi M, Mo A, Martin C L. Two-phase modeling directed toward hot tearing formation in aluminum direct chill casting [J]. Metall. Mater. Trans., 2002, 33A: 2081
26 Liu Z, Zhang K, Zeng X Q. Theoretical Basis and Application of Magnesium-Based Light Alloy [M]. Beijing: China Machine Press, 2002: 26
26 刘 正, 张 奎, 曾小勤. 镁基轻质合金理论基础及其应用 [M]. 北京: 机械工业出版社, 2002: 26
27 Zhao Z Y. The application of RE-containing magnesium casting alloys in aviation industry in China [J]. J. Mater. Eng., 1993, (7): 8
27 赵志远. 铸造稀土镁合金在我国航空工业中的应用 [J]. 材料工程, 1993, (7): 8
28 Liu X, Zhang Z Q, Le Q C, et al. Effects of Nd/Gd value on the microstructures and mechanical properties of Mg-Gd-Y-Nd-Zr alloys [J]. J. Magnes. Alloy., 2016, 4: 214
29 Luo S F, Yang G Y, Qin H, et al. Substitution effects of Gd with Nd on microstructures and mechanical properties of Mg-10Gd-0.4Zr alloys [J]. Adv. Eng. Mater., 2020, 22: 1901576
30 Luo A A. Recent magnesium alloy development for elevated temperature applications [J]. Int. Mater. Rev., 2004, 49: 13
31 Zhang W Y. Study progress of magnesium alloy and its working technology [J]. Mater. China, 2007, 26(8): 15
31 张文毓. 镁合金及其加工技术研究进展 [J]. 稀有金属快报, 2007, 26(8): 15
32 Shi L, Li J W, Guan R G, et al. Effects of Mn and Ca elements on the microstructures of magnesium alloys [J]. Non-Ferr. Min. Metall., 2008, 24(1): 23, 55
32 石 路, 李江委, 管仁国 等. Ca、Mn对镁合金凝固组织的影响 [J]. 有色矿冶, 2008, 24(1): 23, 55
33 Zhang W P, Ma M L, Zhang K, et al. Microstructures and properties of Mg-2Zn alloys with different Cu contents [J]. Chin. J. Rare Met., 2020, 44: 113
33 张万鹏, 马鸣龙, 张 奎 等. Cu含量对Mg-2Zn合金组织及性能影响研究 [J]. 稀有金属, 2020, 44: 113
34 Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated temperature applications [J]. J. Mater. Sci., 1994, 29: 5259
35 Jiang S Y, Yuan Y, Chen T, et al. Research progress on corrosion resistance of magnesium alloys in aspect of element solid-solution and precipitation [J]. J. Mater. Eng., 2021, 49(12): 40
35 蒋诗语, 袁 媛, 陈 涛 等. 元素固溶与析出对镁合金耐蚀性影响的研究进展 [J]. 材料工程, 2021, 49(12): 40
doi: 10.11868/j.issn.1001-4381.2021.000286
36 Huang X F, Zhu K, Cao X J, et al. The roles of alloying elements in magnesium alloys [J]. Found. Technol., 2008, 29: 1574
36 黄晓锋, 朱 凯, 曹喜娟. 主要合金元素在镁合金中的作用 [J]. 铸造技术, 2008, 29: 1574
37 Wang Z, Huang Y D, Srinivasan A, et al. Influences of Y additions on the hot tearing susceptibility of Mg-1.5wt.%Zn alloys [J]. Met. Sci. Forum, 2013, 765: 306
38 Wang Z, Song J F, Huang Y D, et al. An investigation on hot tearing of Mg-4.5Zn-(0.5Zr) alloys with Y additions [J]. Metall. Mater. Trans., 2015, 46A: 2108
39 Wei Z Q, Wang Y, Liu Z. Effects of Zn and Y on hot-tearing susceptibility of Mg-xZn-2xY alloys [J]. Mater. Sci. Technol., 2018, 34: 2001
40 Feng Y, Mao P L, Liu Z, et al. Effect of yttrium content on hot tearing susceptibility of MgZn4.5Y x Zr0.5 alloys [J]. Chin. J. Nonferrous Met., 2017, 27: 1970
40 冯 羽, 毛萍莉, 刘 正 等. 钇含量对MgZn4.5Y x Zr0.5合金热裂敏感性的影响 [J]. 中国有色金属学报, 2017, 27: 1970
41 Zhou Z J, Liu Z, Wang Y, et al. Effects of the second phase on hot tearing susceptibility of Mg-Zn-Y alloy [J]. Mater. Res. Express, 2018, 6: 016529
42 Zhou Y, Mao P L, Zhou L, et al. Effect of long-period stacking ordered phase on hot tearing susceptibility of Mg-1Zn-xY alloys [J]. J. Magnes. Alloy., 2020, 8: 1176
43 Wei Z Q, Liu Z, Wang Y, et al. Hot tearing behavior and microstructure mechanism of Mg-6.5Zn-xY-0.5Zr alloys [J]. Mater. Res. Express, 2019, 6: 076570
44 Jia D R, Liu Z, Mao P L, et al. Hot tearing behavior of Mg-5(Zn + Y)-0.5Zr alloys [J]. Mater. Res. Express, 2017, 4: 106511
45 Li X X, Liu Z, Wang Y, et al. Hot tearing defects of as-cast Mg-xZn-0.5Y-0.5Zr alloys [J]. Chin. J. Rare Met., 2020, 44: 697
45 李星星, 刘 正, 王 越 等. 铸态镁合金Mg-xZn-0.5Y-0.5Zr热裂缺陷研究 [J]. 稀有金属, 2020, 44: 697
46 Wang Z, Li Y Z, Wang F, et al. Hot tearing susceptibility of Mg-xZn-2Y alloys [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 3115
47 Wang Z, Yao S, Feng Y, et al. Solidification pathways and hot tearing susceptibility of MgZn x Y4Zr0.5 alloys [J]. China Found., 2018, 15: 124
48 Wei Z Q. Effects of solidification behavior of several Mg-Zn-RE (Y, Gd) series alloys on hot tearing mechanism [D]. Shenyang: Shenyang University of Technology, 2021
48 魏子淇. 几种Mg-Zn-RE(Y, Gd)系合金凝固行为对热裂机制的影响 [D]. 沈阳: 沈阳工业大学, 2021
49 Liu P, Jiang H T, Cai Z X, et al. The effect of Y, Ce and Gd on texture, recrystallization and mechanical property of Mg-Zn alloys [J]. J. Magnes. Alloy., 2016, 4: 188
50 Li R G, Yan Y, Pan H C. Achieving a high-strength binary Mg-15Gd alloy by nano substructure with Gd segregation and nano clusters [J]. Mater. Res. Lett., 2022, 10: 682
51 Srinivasan A, Wang Z, Huang Y D, et al. Hot tearing characteristics of binary Mg-Gd alloy castings [J]. Metall. Mater. Trans., 2013, 44A: 2285
52 Luo S F, Yang G Y, Zou Z, et al. Hot tearing susceptibility of binary Mg-Gd alloy castings and influence of grain refinement [J]. Adv. Eng. Mater., 2018, 20: 1800139
53 Liu S J. Researches on the solidification characteristic and mechanical properties of Mg-Zn-Gd-based magnesium alloy [D]. Xi'an: Northwestern Polytechnical University, 2015
53 刘少军. Mg-Zn-Gd系镁合金的凝固特性及其力学性能研究 [D]. 西安: 西北工业大学, 2015
54 Qin H, Yang G Y, Zheng X W, et al. Effect of Gd content on hot-tearing susceptibility of Mg-6Zn-xGd casting alloys [J]. China Found., 2022, 19: 131
55 Fu X Q, Liu S M, Zhou L, et al. Study on the coupling behavior and micro-mechanism of solidification and hot tearing of Mg-xZn-2xGd Alloys [J]. Int. J. Metalcast., 2021, 15: 1175
56 Li H, Du W B, Li S B, et al. Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg-Zn-Er alloys [J]. Mater. Des., 2012, 35: 259
57 Liu Y H, Wang Z H, Liu K, et al. Effects of Er on hot cracking susceptibility of Mg-5Zn-xEr magnesium Alloys [J]. Acta Metall. Sin., 2019, 55: 389
57 刘耀鸿, 王朝辉, 刘 轲 等. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响 [J]. 金属学报, 2019, 55: 389
doi: 10.11900/0412.1961.2018.00399
58 Liu Y H, Wang Z H, Li S B, et al. Hot cracking behaviors of Mg-Zn-Er alloys with different Er contents [J]. Metals, 2023, 16: 3546
59 Emley E F. Principles of Magnesium Technology [M]. Oxford: Pergamon Press, 1966: 1
60 Zhou Z J. Study on solidification behavior and hot tearing susceptibility of Mg-Zn-Y alloy [D]. Shenyang: Shenyang University of Technology, 2019
60 周子荐. Mg-Zn-Y合金凝固行为及热裂敏感性研究 [D]. 沈阳: 沈阳工业大学, 2019
61 Song J F, Wang Z, Huang Y D, et al. Effect of Zn addition on hot tearing behaviour of Mg-0.5Ca-xZn alloys [J]. Mater. Des., 2015, 87: 157
62 Chen X H, Liu L Z, Pan F S, et al. Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg-Zn-Cu-Zr alloys [J]. Mater. Sci. Eng., 2015, B197: 67
63 Zhang W P. Effect of Cu element on microstructure and thermalphysical properties of Mg-Zn alloy [D]. Beijing: General Research Institute for Nonferrous Metals, 2018
63 张万鹏. Cu元素对Mg-Zn系合金显微组织及热物性能影响研究 [D]. 北京: 北京有色金属研究总院, 2018
64 Zhu H M, Luo C P, Liu J W, et al. Effects of Cu addition on microstructure and mechanical properties of as-cast magnesium alloy ZK60 [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 605
65 Hu Y B, Yao Q S, Zhu C, et al. Effects of mass ratio of zinc/copper on microstructure and properties of extruded Mg-Zn-Cu-Ce alloys [J]. Rare Met. Mater. Eng., 2017, 46: 1668
65 胡耀波, 姚青山, 朱 灿 等. Zn/Cu质量比对挤压态Mg-Zn-Cu-Ce合金组织和性能的影响 [J]. 稀有金属材料与工程, 2017, 46: 1668
66 Wang Z, Li Y Z, Wang F, et al. Effect of Cu additions on microstructure, mechanical properties and hot-tearing susceptibility of Mg-6Zn-0.6Zr alloys [J]. J. Mater. Eng. Perform., 2016, 25: 5530
67 Wang Z, Zhou Y, Li Y Z, et al. Hot tearing behaviors and in-situ thermal analysis of Mg-7Zn-xCu-0.6Zr alloys [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 1504
68 Zhang B P, Wang Y, Geng L. Research on Mg-Zn-Ca alloy as degradable biomaterial [A]. Biomaterials—Physics and Chemistry [M], 2011: 183
69 Cao L F, Du W B, Su X K, et al. Role of calcium alloying in magnesium alloys [J]. Found. Technol., 2006, 27: 182
69 曹林锋, 杜文博, 苏学宽 等. Ca合金化在镁合金中的作用 [J]. 铸造技术, 2006, 27: 182
70 Song J F, Wang Z, Huang Y D, et al. Hot tearing characteristics of Mg-2Ca-xZn alloys [J]. J. Mater. Sci., 2016, 51: 2687
71 Liu Z, Zhang Y, Mao P L, et al. Effect of Ca on hot tearing susceptibility of Mg-Zn alloy [J]. J. Shenyang Univ. Technol., 2013, 35: 624
71 刘 正, 张 越, 毛萍莉 等. Ca对Mg-Zn合金热裂敏感性的影响 [J]. 沈阳工业大学学报, 2013, 35: 624
72 Bai S W, Wang F, Wang Z, et al. Effect of Ca content on hot tearing susceptibility of Mg-4Zn-xCa-0.3Zr (x = 0.5, 1, 1.5, 2) alloys [J]. Int. J. Metalcast., 2021, 15: 1298
73 Yin P, Li N F, Lei T, et al. Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys [J]. J. Mater. Sci. Mater. Med., 2013, 24: 1365
74 Yang M B, Pan F S, Li Z S, et al. Alloying elements and their effects in Mg-Al based elevated temperature magnesium alloy [J]. Mater. Rep., 2005, (04): 46
74 杨明波, 潘复生, 李忠盛 等. Mg-Al系耐热镁合金中的合金元素及其作用 [J]. 材料导报, 2005, (04): 46
75 Yang M B, Pan F S, Yang A T, et al. Research status of Mg-Zn-Al(ZA) based elevated temperature magnesium alloy [J]. Hot Work. Technol., 2007, 36(8): 73
75 杨明波, 潘复生, 汤爱涛 等. Mg-Zn-Al(ZA)系耐热镁合金的研究现状 [J]. 热加工工艺, 2007, 36(8): 73
76 Vinodh G, Jafari Hodooshan H R, Li D J, et al. Effect of Al content on hot-tearing susceptibility of Mg-10Zn-xAl alloys [J]. Metall. Mater. Trans., 2020, 51A: 1897
77 Li T X, Wang F, Du X D, et al. Effect of Al content on hot tearing susceptibility of Mg-5Zn-0.6Mn-xAl-0.6Zr alloys [J/OL]. Int. J. Metalcast., 2022. (2023-06-30).
78 Li B C, Zhang J, Ye F W, et al. An approach to studying the hot tearing mechanism of alloying elements in ternary Mg-Zn-Al alloys [J]. J. Mater. Process. Technol., 2023, 317: 117980
79 Li X X, Liu Z, Wang Y, et al. Investigation on hot tearing behavior and its mechanism of Mg-4.5Zn-xY-yNd (x + y = 6, x = 0, 1, 3, 6) alloys [J]. Mater. Res. Express, 2019, 6: 106535
80 Wei Z Q, Liu S M, Liu Z, et al. Effects of Zn content on hot tearing susceptibility of Mg-Zn-Gd-Y-Zr alloys [J]. Int. J. Metalcast., 2022, 16: 1902
81 Zhu G N, Wang Z, Qiu W Y, et al. Effect of yttrium on hot tearing susceptibility of Mg-6Zn-1Cu-0.6Zr alloys [J]. Int. J. Metalcast., 2020, 14: 179
82 Zhou J, Nodooshan H R J, Li D J, et al. Microstructure and tensile properties of the Mg-6Zn-4Al-xSn die cast magnesium alloy [J]. Metals, 2019, 9: 113
83 Leng F, Wang F, Du X D, et al. Study on the hot tearing susceptibility of Mg-4Zn-xSn-1Ca alloys [J]. Int. J. Metalcast., 2022, 17: 342
84 Leng F. Study on hot tearing behavior of Mg-Zn-Sn alloys under magnetic field [D]. Shenyang: Shenyang University of Technology, 2021
84 冷 枫. 磁场作用下Mg-Zn-Sn合金热裂行为研究 [D]. 沈阳: 沈阳工业大学, 2021
85 Anthony A I, Suzuki A, Kamado S, et al. Optimization of Mg-Zn-Al-Ca-La alloys for the improvement of casting properties and creep resistance [J]. Mater. Sci. Forum, 2005, 488-489: 805
86 Zhang G J, Wang Y, Liu Z, et al. Influence of Al addition on solidification path and hot tearing susceptibility of Mg-2Zn-(3 + 0.5x)Y-xAl alloys [J]. J. Magnes. Alloy., 2019, 7: 272
87 Zhang G J, Liu Z, Wang Y, et al. An investigation on solidification path and hot tearing tendency of Mg-2Zn-3Y-xAl alloys [J]. Mater. Sci. Eng. Technol., 2019, 50: 1471
88 Zhang Z, Couture A, Luo A L. An investigation of the properties of Mg-Zn-Al alloys [J]. Scr. Mater., 1998, 39: 45
89 Birru A K, Benny Karunakar D. Effects of grain refinement and residual elements on hot tearing of A713 aluminium cast alloy [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1783
90 Dong J, Zhao Z H, Cui J Z, et al. Effect of low-frequency electromagnetic casting on the castability, microstructure, and tensile properties of direct-chill cast Al-Zn-Mg-Cu alloy [J]. Metall. Mater. Trans., 2004, 35A: 2487
91 Du X D, Wang F, Wang Z, et al. Hot tearing susceptibility of AXJ530 alloy under low-frequency alternating magnetic field [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1259
92 Duan W C, Yin S Q, Liu W H, et al. Numerical and experimental studies on solidification of AZ80 magnesium alloy under out-of-phase pulsed magnetic field [J]. J. Magnes. Alloy., 2021, 9: 166
93 Zhang Z W, Le Q C, Bao L, et al. Effects of low frequency electromagnetic field on surface quality, microstructure and hot-tearing tendency of semi-continuous casting ZK60 magnesium alloy billets [J]. China Found., 2013, 10: 351
94 Zhou Y, Mao P L, Wang Z, et al. Effect of low frequency alternating magnetic field on hot tearing susceptibility of Mg-7Zn-1Cu-0.6Zr magnesium alloy [J]. J. Mater. Process. Technol., 2020, 282: 116679
95 Bai S W, Wang F, Du X D, et al. Effect of alternating magnetic fields on hot tearing susceptibility of Mg-4Zn-1.5Ca alloy [J]. Mater. Sci. Technol., 2023, 39: 50
96 Du X D, Wang F, Bai S W, et al. Effect of low-frequency alternating magnetic field strength on hot tearing susceptibility of AXJ530 alloy [J]. Int. J. Metalcast., 2022, 17: 2017
97 Feurer U. Influence of alloy composition and solidification conditions on dendrite arm spacing, feeding, and hot tear properties of aluminum alloys [A]. Proceedings of the International Symposium Engineering Alloys [C]. New York, United States, 1977: 131
98 Luo L, Luo L S, Su Y Q, et al. Reducing porosity and optimizing performance for Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 79: 1
doi: 10.1016/j.jmst.2020.11.035
99 Chang Z Y, Wu Y J, Heng X W, et al. Characterization of microstructure and nanoscale phase in Mg-15Gd-1Zn (wt.%) alloy fabricated by rotating magnetic field casting [J]. Mater. Charact., 2020, 170: 110660
100 Zhu J Z, Guo J, Samonds M T. Numerical modeling of hot tearing formation in metal casting and its validations [J]. Int. J. Numer. Methods Eng., 2011, 87(1-5): 289
101 Du X D, Wang F, Wang Z, et al. Effect of Ca/Al ratio on hot tearing susceptibility of Mg-Al-Ca alloy [J]. J. Alloy. Compd., 2022, 911: 165113
102 Zhou Y, Mao P L, Wang Z, et al. Experimental investigation and simulation assessment on fluidity and hot tearing of Mg-Zn-Cu system alloys [J]. J. Mater. Process. Technol., 2021, 297: 117259
103 Zhou Y, Mao P L, Wang Z, et al. Effects of copper content and mold temperature on the hot tearing susceptibility of Mg-7Zn-xCu-0.6Zr alloys [J]. Metall. Mater. Trans., 2018, 49B: 3444
104 Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magnes. Alloy., 2016, 4: 151
105 Rappaz M, Drezet J M, Gremaud M. A new hot-tearing criterion [J]. Metall. Mater. Trans., 1999, 30A: 449
106 Wang Z, Huang Y D, Srinivasan A, et al. Experimental and numerical analysis of hot tearing susceptibility for Mg-Y alloys [J]. J. Mater. Sci., 2014, 49: 353
107 Wang F, Dong H K, Wang Z, et al. Hot cracking behavior of Mg-5Al-xCa Alloys [J]. Acta Metall. Sin., 2017, 53: 211
107 王 峰, 董海阔, 王 志 等. Mg-5Al-xCa合金的热裂行为 [J]. 金属学报, 2017, 53: 211
108 Shi K. Microstructure evolution of semi solid slurry of AZ91D magnesium alloy under ultrasonic vibration [D]. Nanchang: Nanchang University, 2021
108 史 坤. 超声振动下AZ91D镁合金半固态浆料微观组织演变 [D]. 南昌: 南昌大学, 2021
109 Zhai W, Chang J, Geng D L, et al. Progress and prospect of solidification research for metallic materials [J]. Chin. J. Nonferrous Met., 2019, 29: 1953
109 翟 薇, 常 健, 耿德路 等. 金属材料凝固过程研究现状与未来展望 [J]. 中国有色金属学报, 2019, 29: 1953
110 Li Y, Li H X, Katgerman L, et al. Recent advances in hot tearing during casting of aluminium alloys [J]. Prog. Mater. Sci., 2021, 117: 100741
111 Lee D C G. The hot tearing tendencies of aluminium casting alloys [J]. J. Inst. Met., 1946, 72: 644
112 Chen D X, Wang J S, Wang Y, et al. A review on hot tearing models in direct chill casting of aluminum alloys [J]. Aeronaut. Manuf. Technol., 2020, 63(22): 24
112 陈东旭, 王俊升, 王 郁 等. 铝合金半连续铸造过程中热裂模型综述 [J]. 航空制造技术, 2020, 63(22): 24
113 Williams J A, Singer A R E. Deformation, strength, and fracture above the solidus temperature [J]. J. Inst. Met., 1968, 96(1): 5
114 Novikov I I, Grushko O E. Hot cracking susceptibility of Al-Cu-Li and Al-Cu-Li-Mn alloys [J]. Mater. Sci. Technol., 1995, 11: 926
115 Eskin D G, Suyitno, Katgerman L. Mechanical properties in the semi-solid state and hot tearing of aluminium alloys [J]. Prog. Mater. Sci., 2004, 49: 629
116 Liu S M, Wei Z Q, Liu Z, et al. Effect of Zn content on hot tearing susceptibility of LPSO enhanced Mg-Zn x -Y2-Zr0.06 alloys with different initial mold temperatures [J]. J. Alloy. Compd., 2022, 904: 163963
117 Lin S, Aliravci C, Pekguleryuz M O. Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining [J]. Metall. Mater. Trans., 2007, 38A: 1056
118 Easton M, Grandfield J, StJohn D, et al. The effect of grain refinement and cooling rate on the hot tearing of wrought aluminium alloys [J]. Mater. Sci. Forum, 2006, 519-521: 1675
119 Du X D, Wang F, Wang Z, et al. Effect of addition of minor amounts of Sb and Gd on hot tearing susceptibility of Mg-5Al-3Ca alloy [J]. J. Magnes. Alloy., 2023, 11: 694
120 Dong H K, Wang F, Wang Z, et al. Effect of Sn addition on hot tearing susceptibility of AXJ530 alloy [J]. Mater. Res. Express, 2018, 5: 036513
[1] 李天瑞, 许瑜倩, 吴文平, 甘文萱, 杨永, 刘国怀, 王昭东. VB元素对Ti-44Al-5Nb-1Mo合金显微组织及热变形机制的影响[J]. 金属学报, 2024, 60(5): 650-660.
[2] 王金鑫, 姚美意, 林雨晨, 陈刘涛, 高长源, 徐诗彤, 胡丽娟, 谢耀平, 周邦新. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2024, 60(5): 670-680.
[3] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[4] 黎康杰, 孙泽羽, 何蓓, 田象军. 基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度[J]. 金属学报, 2024, 60(5): 661-669.
[5] 黄建松, 裴文, 徐诗彤, 白勇, 姚美意, 胡丽娟, 谢耀平, 周邦新. Nb锆合金在含氧蒸汽中耐腐蚀性能恶化的机理[J]. 金属学报, 2024, 60(4): 509-521.
[6] 倪明杰, 刘仁慈, 周浩浩, 杨超, 葛术宇, 刘冬, 史凤岭, 崔玉友, 杨锐. 磨削深度对 γ-TiAl合金表面完整性和疲劳性能的影响[J]. 金属学报, 2024, 60(2): 261-272.
[7] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[8] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[13] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[14] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[15] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.