Please wait a minute...
金属学报  2025, Vol. 61 Issue (6): 900-908    DOI: 10.11900/0412.1961.2023.00299
  研究论文 本期目录 | 过刊浏览 |
Zr61Ti2Cu25Al12 非晶合金的过冷液体特性与晶化解耦
李晓诚1(), 寇生中1,2(), 李春玲3, 李春燕1,2, 赵燕春1,2
1 兰州理工大学 材料科学与工程学院 兰州 730050
2 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
3 兰州理工大学 机电工程学院 兰州 730050
Supercooled Liquid Characteristics and Crystallization Decoupling of Zr61Ti2Cu25Al12 Amorphous Alloy
LI Xiaocheng1(), KOU Shengzhong1,2(), LI Chunling3, LI Chunyan1,2, ZHAO Yanchun1,2
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
3 School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
引用本文:

李晓诚, 寇生中, 李春玲, 李春燕, 赵燕春. Zr61Ti2Cu25Al12 非晶合金的过冷液体特性与晶化解耦[J]. 金属学报, 2025, 61(6): 900-908.
Xiaocheng LI, Shengzhong KOU, Chunling LI, Chunyan LI, Yanchun ZHAO. Supercooled Liquid Characteristics and Crystallization Decoupling of Zr61Ti2Cu25Al12 Amorphous Alloy[J]. Acta Metall Sin, 2025, 61(6): 900-908.

全文: PDF(1611 KB)   HTML
摘要: 

为了更深入地了解非晶合金过冷液体的特性和晶化行为,本工作针对具有高断裂韧性和良好生物相容性并在柔顺机构和生物植入体方面具有应用前景的Zr61Ti2Cu25Al12非晶合金,采用快速扫描量热和常规热分析技术相结合,实现了6个数量级(10-2~104 K/s)升温速率的调控,揭示出超宽温度范围内过冷液体依赖于升温速率的动力学特性:过冷液体的动力学行为滞后于温度的快速变化,2者符合VFT方程;脆度系数的小幅变化(m = 35~47)意味着其过冷液体结构随温度变化比较平缓,从而表现出具有一定的“强”液体行为;通过平移时间维度坐标,得出从玻璃转变到熔点整个温度范围内的平均m ≈ 45。该非晶合金晶化过程中晶体生长的温度依赖性表明生长激活能随温度升高逐渐降低,单位温度下的激活能降约为0.5 kJ/(mol·K),在玻璃转变温度附近,晶体生长动力学与黏性流动间发生解耦,通过引入解耦指数(ξ = 0.84)使得晶体生长动力学系数(Ukin)与黏度(η)在更宽的温度范围内符合幂律关系:Ukinη-ξ

关键词 非晶合金快速扫描量热过冷液体黏度脆度晶化    
Abstract

Plastic deformation of amorphous alloys below the glass transition temperature is inhomogeneous and highly localized within narrow shear bands. However, the processing and manufacturing of amorphous alloys in their supercooled liquid state exhibit unique advantages for engineering application. Although the discovery of bulk metallic glasses has substantially expanded the processing time and temperature window, experimental research on the supercooled liquid states of amorphous alloys remains widely limited to narrow regions near either their glass transition temperature or melting point. The crystallization of supercooled liquids severely limits the characterization of their kinetic behavior in the high-temperature region. Therefore, an enhanced comprehensive understanding of supercooled liquid characteristics and crystallization kinetic behavior of metallic glasses is necessary. Zr61Ti2Cu25Al12 amorphous alloy shows broad application prospects in the fabrication of flexible mechanism components and biological implants because of its high fracture toughness, high elastic strain limit, and good biocompatibility properties. Six orders of magnitude (10-2-104 K/s) of heating rate changes were achieved for Zr61Ti2Cu25Al12 metallic glass by combining flash differential scanning calorimetry (FDSC) with conventional DSC. This implies that the kinetic characteristics of the alloy supercooled liquid is dependent on the heating rate of the alloy over an ultra-extensive temperature range. The kinetic behavior of the alloy supercooled liquid lags behind the rapid changes in temperature, and both follow the Vogel-Fulcher-Tammann equation. The small variation in the fragility index (m = 35-47) indicates that the supercooled liquid structure changes gently with temperature, thereby showing a “strong” liquid behavior. An average m ≈ 45 is obtained over the entire temperature range from the glass transition temperature to the melting point via time dimension coordinate translation. The dependence of crystal growth on temperature during the crystallization process of the Zr61Ti2Cu25Al12 amorphous alloy indicates that the activation energy of crystal growth gradually decreases with increasing temperature, and the reduction in activation energy per unit temperature obtained here is approximately 0.5 kJ/(mol·K). Near the glass transition temperature, decoupling occurs between crystal growth kinetics and viscous flow. The kinetics coefficient for crystal growth (Ukin) follows a power law relationship with viscosity (η) over a wide temperature range when an exponent ξ = 0.84 is introduced: Ukinη-ξ.

Key wordsamorphous alloy    flash DSC    supercooled liquid    viscosity    fragility    crystallization
收稿日期: 2023-07-11     
ZTFLH:  TG139  
基金资助:国家自然科学基金项目(51971103);国家自然科学基金项目(51861021);甘肃省重点研发计划项目(20YF8GA052)
通讯作者: 李晓诚,lixc@lut.edu.cn,主要从事非晶合金方面的研究;
寇生中,kousz@lut.cn,主要从事非晶合金方面的研究
Corresponding author: LI Xiaocheng, Tel: (0931)2976702, E-mail: lixc@lut.edu.cn
KOU Shengzhong, professor, Tel: (0931)2976702, E-mail: kousz@lut.cn
作者简介: 李晓诚,男,1983年生,博士
图1  直径为3 mm Zr61Ti2Cu25Al12合金铸态棒的XRD谱和HRTEM像
图2  Zr61Ti2Cu25Al12合金的常规差示扫描量热(DSC)和快速扫描量热(FDSC)热流曲线
图3  Zr61Ti2Cu25Al12合金玻璃化转变激活能(Eg)和晶化激活能(Ep)及对应的Kissinger图
图4  Zr61Ti2Cu25Al12合金特征温度与升温速率(Φh)之间的关系及经时间维度调整后的曲线
Characteristic temperatureB0D0

T0

K

r2
Tg23.57.2509.80.992
Tx19.012.5446.90.997
Tp17.911.7451.90.998
表1  Zr61Ti2Cu25Al12合金特征温度的lnΦh-T拟合参数及决定系数(r2)
图5  Zr61Ti2Cu25Al12合金特征温度的Kissinger图及经时间维度调整后的曲线
Fitting formulaCharacteristic temperatureA2B / K4C / KT1 / Kr2
lnU-1000 / TTg-0.329231.62.0771.00.997
Tx0.8188892.891.0903.50.996
Tp0.3166443.862.61013.60.993
lnUkin-1000 / TTg-0.855827.91.8769.30.997
Tx-0.8916427.347.4899.10.997
Tp-1.3308220.731.8967.70.999
表2  Zr61Ti2Cu25Al12合金特征温度的lnU-1000 / T和lnUkin-1000 / T拟合参数及决定系数
Characteristic temperature

A0

Pa·s

C0

K

T2

K

r2
Tg8.78353396.1514.70.991
Tx0.01844744.9464.30.997
Tp0.00955867.8421.20.997
表3  Zr61Ti2Cu25Al12合金特征温度的-lnη-1000 / T拟合参数及决定系数
图6  本工作及相关文献[36~38]中玻璃形成熔体黏度随约化温度变化的Angell图
图7  解耦指数(ξ)与脆度系数(m)之间的关系
1 Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
1 汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
2 Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24: 42
3 Li M X, Zhao S F, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
4 Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
5 Li C Y, Zhu F P, Ding J Q, et al. Nanoindentation investigation on creep behavior of Zr-based bulk metallic glass [J]. Rare Met. Mater. Eng., 2020, 49: 3353
6 Zhao Y C, Mao X J, Li W S, et al. Microstructure and corrosion behavior of Fe-15Mn-5Si-14Cr-0.2C amorphous steel [J]. Acta Metall. Sin., 2020, 56: 715
doi: 10.11900/0412.1961.2019.00275
6 赵燕春, 毛雪晶, 李文生 等. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为 [J]. 金属学报, 2020, 56: 715
doi: 10.11900/0412.1961.2019.00275
7 He Q, Cheng Y Q, Ma E, et al. Locating bulk metallic glasses with high fracture toughness: Chemical effects and composition optimization [J]. Acta Mater., 2011, 59: 202
8 He Q, Xu J. Locating malleable bulk metallic glasses in Zr-Ti-Cu-Al alloys with calorimetric glass transition temperature as an indicator [J]. J. Mater. Sci. Technol., 2012, 28: 1109
9 Li D F, Yang Y L, Shen Y, et al. Bending fatigue behavior of thin Zr61Ti2Cu25Al12 bulk metallic glass beams for compliant mechanisms application [J]. J. Mater. Sci. Technol., 2021, 89: 1
10 Li J, Shi L L, Zhu Z D, et al. Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: Biocompatibility assessment by in vitro cellular responses [J]. Mater. Sci. Eng., 2013, C33: 2113
11 Liu S S, Hou C N, Wang E G, et al. Plastic rheological behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 amorphous alloys in the supercooled liquid region [J]. Acta Metall. Sin., 2021, 58: 807
11 刘帅帅, 侯超楠, 王恩刚 等. Zr61Cu25Al12Ti2和Zr52.5Cu17.9Ni14.6Al10-Ti5块体非晶合金过冷液相区的塑性流变行为 [J]. 金属学报, 2021, 58: 807
12 Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Anal. Chem., 1957, 29: 1702
13 Brüning R, Samwer K. Glass transition on long time scales [J]. Phys. Rev., 1992, 46B: 11318
14 Bai F X, Yao J H, Wang Y X, et al. Crystallization kinetics of an Au-based metallic glass upon ultrafast heating and cooling [J]. Scripta Mater., 2017, 132: 58
15 Yang Q, Peng S X, Bu Q Z, et al. Revealing glass transition and supercooled liquid in Ni80P20 metallic glass [J]. Acta Metall. Sin., 2021, 57: 553
15 杨 群, 彭思旭, 卜庆周 等. 非晶态Ni80P20合金的玻璃转变和过冷液体性质 [J]. 金属学报, 2021, 57: 553
16 Yang Q, Huang J, Qin X H, et al. Revealing hidden supercooled liquid states in Al-based metallic glasses by ultrafast scanning calorimetry: Approaching theoretical ceiling of liquid fragility [J]. Sci. China Mater., 2020, 63: 157
17 Orava J, Greer A L, Gholipour B, et al. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry [J]. Nat. Mater., 2012, 11: 279
doi: 10.1038/nmat3275 pmid: 22426461
18 Chen Y X, Zhou D S, Hu W B. Progress of differential scanning calorimetry and its application in polymer characterization [J]. Acta Polym. Sin., 2021, 52: 423
18 陈咏萱, 周东山, 胡文兵. 示差扫描量热法进展及其在高分子表征中的应用 [J]. 高分子学报, 2021, 52: 423
19 Angell C A. Formation of glasses from liquids and biopolymers [J]. Science, 1995, 267: 1924
pmid: 17770101
20 Ashkenazy Y, Averback R S. Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals [J]. Acta Mater., 2010, 58: 524
21 Sun Y, Xi H M, Chen S, et al. Crystallization near glass transition: Transition from diffusion-controlled to diffusionless crystal growth studied with seven polymorphs [J]. J. Phys. Chem., 2008, 112B: 5594
22 Ediger M D, Harrowell P, Yu L. Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity [J]. J. Chem. Phys., 2008, 128: 034709
23 Nascimento M L F, Zanotto E D. Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition? [J]. J. Chem. Phys., 2010, 133: 174701
24 Zhuravlev E, Schick C. Fast scanning power compensated differential scanning nano-calorimeter: 1. The device [J]. Thermochim. Acta, 2010, 505: 1
25 Zhuravlev E, Schick C. Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis [J]. Thermochim. Acta, 2010, 505: 14
26 Kelton K F. Analysis of crystallization kinetics [J]. Mater. Sci. Eng., 1997, A226-228: 142
27 Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15 [J]. Mater. Sci. Eng., 1976, 23: 173
28 Vogel H. The law of the relation between the viscosity of liquids and the temperature [J]. Phys. Zeit., 1921, 22: 645
29 Fulcher G S. Analysis of recent measurements of the viscosity of glasses [J]. J. Am. Ceram. Soc., 1925, 8: 339
30 Tammann G, Hesse W. Die abhängigkeit der viscosität von der temperatur bei unterkühlten flüssigkeiten [J]. Z. Anorg. Allg. Chem., 1926, 156: 245
31 Bohmer R, Angell C A. Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids [J]. Phys. Rev., 1992, 45B: 10091
32 Perera D N, Tsai A P. Thermal and viscoelastic properties of a strong bulk metallic glass former [J]. J. Phys., 2000, 33D: 1937
33 Chen H S. A method for evaluating viscosities of metallic glasses from the rates of thermal transformations [J]. J. Non-Cryst. Solids, 1978, 27: 257
34 Cohen M H, Grest G S. Liquid-glass transition a free-volume approach [J]. Phys. Rev., 1979, 20B: 1077
35 Angell C A, Sichina W. Thermodynamics of the glass transition: Empirical aspects [J]. Ann. N. Y. Acad. Sci., 1976, 279: 53
36 Busch R, Schroers J, Wang W H. Thermodynamics and kinetics of bulk metallic glass [J]. MRS Bull., 2007, 32: 620
37 Waniuk T A, Busch R, Masuhr A, et al. Equilibrium viscosity of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass-forming liquid and viscous flow during relaxation, phase separation, and primary crystallization [J]. Acta Mater., 1998, 46: 5229
38 Busch R, Gallino I. Kinetics, thermodynamics, and structure of bulk metallic glass forming liquids [J]. JOM, 2017, 69: 2178
39 Alba C, Busse L E, List D J, et al. Thermodynamic aspects of the vitrification of toluene, and xylene isomers, and the fragility of liquid hydrocarbons [J]. J. Chem. Phys., 1990, 92: 617
[1] 蔡正清, 尹大伟, 杨靓, 王文祥, 王飞龙, 温永清, 马明臻. Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响[J]. 金属学报, 2025, 61(4): 572-582.
[2] 杜银, 李涛, 裴旭辉, 周青, 王海丰. TiZrHfCuBe高熵非晶合金的纳米划痕力学行为[J]. 金属学报, 2024, 60(11): 1451-1460.
[3] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[4] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[5] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[6] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[7] 韩录会, 柯海波, 张培, 桑革, 黄火根. 非晶态U60Fe27.5Al12.5 合金的晶化动力学行为[J]. 金属学报, 2022, 58(10): 1316-1324.
[8] 杨群, 彭思旭, 卜庆周, 于海滨. 非晶态Ni80P20合金的玻璃转变和过冷液体性质[J]. 金属学报, 2021, 57(4): 553-558.
[9] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[10] 胡祥, 葛嘉城, 刘思楠, 伏澍, 吴桢舵, 冯涛, 刘冬, 王循理, 兰司. 具有异常放热现象的Fe-Nb-B-Y非晶合金燃烧机理[J]. 金属学报, 2021, 57(4): 542-552.
[11] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[12] 毕甲紫, 刘晓斌, 李然, 张涛. 非晶合金粉末作为润滑油添加剂的摩擦学性能[J]. 金属学报, 2021, 57(4): 559-566.
[13] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[14] 朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
[15] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.