|
|
Zr61Ti2Cu25Al12 非晶合金的过冷液体特性与晶化解耦 |
李晓诚1( ), 寇生中1,2( ), 李春玲3, 李春燕1,2, 赵燕春1,2 |
1 兰州理工大学 材料科学与工程学院 兰州 730050 2 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050 3 兰州理工大学 机电工程学院 兰州 730050 |
|
Supercooled Liquid Characteristics and Crystallization Decoupling of Zr61Ti2Cu25Al12 Amorphous Alloy |
LI Xiaocheng1( ), KOU Shengzhong1,2( ), LI Chunling3, LI Chunyan1,2, ZHAO Yanchun1,2 |
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China 2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 3 School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China |
引用本文:
李晓诚, 寇生中, 李春玲, 李春燕, 赵燕春. Zr61Ti2Cu25Al12 非晶合金的过冷液体特性与晶化解耦[J]. 金属学报, 2025, 61(6): 900-908.
Xiaocheng LI,
Shengzhong KOU,
Chunling LI,
Chunyan LI,
Yanchun ZHAO.
Supercooled Liquid Characteristics and Crystallization Decoupling of Zr61Ti2Cu25Al12 Amorphous Alloy[J]. Acta Metall Sin, 2025, 61(6): 900-908.
1 |
Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
|
1 |
汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
|
2 |
Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24: 42
|
3 |
Li M X, Zhao S F, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
|
4 |
Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
|
5 |
Li C Y, Zhu F P, Ding J Q, et al. Nanoindentation investigation on creep behavior of Zr-based bulk metallic glass [J]. Rare Met. Mater. Eng., 2020, 49: 3353
|
6 |
Zhao Y C, Mao X J, Li W S, et al. Microstructure and corrosion behavior of Fe-15Mn-5Si-14Cr-0.2C amorphous steel [J]. Acta Metall. Sin., 2020, 56: 715
doi: 10.11900/0412.1961.2019.00275
|
6 |
赵燕春, 毛雪晶, 李文生 等. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为 [J]. 金属学报, 2020, 56: 715
doi: 10.11900/0412.1961.2019.00275
|
7 |
He Q, Cheng Y Q, Ma E, et al. Locating bulk metallic glasses with high fracture toughness: Chemical effects and composition optimization [J]. Acta Mater., 2011, 59: 202
|
8 |
He Q, Xu J. Locating malleable bulk metallic glasses in Zr-Ti-Cu-Al alloys with calorimetric glass transition temperature as an indicator [J]. J. Mater. Sci. Technol., 2012, 28: 1109
|
9 |
Li D F, Yang Y L, Shen Y, et al. Bending fatigue behavior of thin Zr61Ti2Cu25Al12 bulk metallic glass beams for compliant mechanisms application [J]. J. Mater. Sci. Technol., 2021, 89: 1
|
10 |
Li J, Shi L L, Zhu Z D, et al. Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: Biocompatibility assessment by in vitro cellular responses [J]. Mater. Sci. Eng., 2013, C33: 2113
|
11 |
Liu S S, Hou C N, Wang E G, et al. Plastic rheological behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 amorphous alloys in the supercooled liquid region [J]. Acta Metall. Sin., 2021, 58: 807
|
11 |
刘帅帅, 侯超楠, 王恩刚 等. Zr61Cu25Al12Ti2和Zr52.5Cu17.9Ni14.6Al10-Ti5块体非晶合金过冷液相区的塑性流变行为 [J]. 金属学报, 2021, 58: 807
|
12 |
Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Anal. Chem., 1957, 29: 1702
|
13 |
Brüning R, Samwer K. Glass transition on long time scales [J]. Phys. Rev., 1992, 46B: 11318
|
14 |
Bai F X, Yao J H, Wang Y X, et al. Crystallization kinetics of an Au-based metallic glass upon ultrafast heating and cooling [J]. Scripta Mater., 2017, 132: 58
|
15 |
Yang Q, Peng S X, Bu Q Z, et al. Revealing glass transition and supercooled liquid in Ni80P20 metallic glass [J]. Acta Metall. Sin., 2021, 57: 553
|
15 |
杨 群, 彭思旭, 卜庆周 等. 非晶态Ni80P20合金的玻璃转变和过冷液体性质 [J]. 金属学报, 2021, 57: 553
|
16 |
Yang Q, Huang J, Qin X H, et al. Revealing hidden supercooled liquid states in Al-based metallic glasses by ultrafast scanning calorimetry: Approaching theoretical ceiling of liquid fragility [J]. Sci. China Mater., 2020, 63: 157
|
17 |
Orava J, Greer A L, Gholipour B, et al. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry [J]. Nat. Mater., 2012, 11: 279
doi: 10.1038/nmat3275
pmid: 22426461
|
18 |
Chen Y X, Zhou D S, Hu W B. Progress of differential scanning calorimetry and its application in polymer characterization [J]. Acta Polym. Sin., 2021, 52: 423
|
18 |
陈咏萱, 周东山, 胡文兵. 示差扫描量热法进展及其在高分子表征中的应用 [J]. 高分子学报, 2021, 52: 423
|
19 |
Angell C A. Formation of glasses from liquids and biopolymers [J]. Science, 1995, 267: 1924
pmid: 17770101
|
20 |
Ashkenazy Y, Averback R S. Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals [J]. Acta Mater., 2010, 58: 524
|
21 |
Sun Y, Xi H M, Chen S, et al. Crystallization near glass transition: Transition from diffusion-controlled to diffusionless crystal growth studied with seven polymorphs [J]. J. Phys. Chem., 2008, 112B: 5594
|
22 |
Ediger M D, Harrowell P, Yu L. Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity [J]. J. Chem. Phys., 2008, 128: 034709
|
23 |
Nascimento M L F, Zanotto E D. Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition? [J]. J. Chem. Phys., 2010, 133: 174701
|
24 |
Zhuravlev E, Schick C. Fast scanning power compensated differential scanning nano-calorimeter: 1. The device [J]. Thermochim. Acta, 2010, 505: 1
|
25 |
Zhuravlev E, Schick C. Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis [J]. Thermochim. Acta, 2010, 505: 14
|
26 |
Kelton K F. Analysis of crystallization kinetics [J]. Mater. Sci. Eng., 1997, A226-228: 142
|
27 |
Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15 [J]. Mater. Sci. Eng., 1976, 23: 173
|
28 |
Vogel H. The law of the relation between the viscosity of liquids and the temperature [J]. Phys. Zeit., 1921, 22: 645
|
29 |
Fulcher G S. Analysis of recent measurements of the viscosity of glasses [J]. J. Am. Ceram. Soc., 1925, 8: 339
|
30 |
Tammann G, Hesse W. Die abhängigkeit der viscosität von der temperatur bei unterkühlten flüssigkeiten [J]. Z. Anorg. Allg. Chem., 1926, 156: 245
|
31 |
Bohmer R, Angell C A. Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids [J]. Phys. Rev., 1992, 45B: 10091
|
32 |
Perera D N, Tsai A P. Thermal and viscoelastic properties of a strong bulk metallic glass former [J]. J. Phys., 2000, 33D: 1937
|
33 |
Chen H S. A method for evaluating viscosities of metallic glasses from the rates of thermal transformations [J]. J. Non-Cryst. Solids, 1978, 27: 257
|
34 |
Cohen M H, Grest G S. Liquid-glass transition a free-volume approach [J]. Phys. Rev., 1979, 20B: 1077
|
35 |
Angell C A, Sichina W. Thermodynamics of the glass transition: Empirical aspects [J]. Ann. N. Y. Acad. Sci., 1976, 279: 53
|
36 |
Busch R, Schroers J, Wang W H. Thermodynamics and kinetics of bulk metallic glass [J]. MRS Bull., 2007, 32: 620
|
37 |
Waniuk T A, Busch R, Masuhr A, et al. Equilibrium viscosity of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass-forming liquid and viscous flow during relaxation, phase separation, and primary crystallization [J]. Acta Mater., 1998, 46: 5229
|
38 |
Busch R, Gallino I. Kinetics, thermodynamics, and structure of bulk metallic glass forming liquids [J]. JOM, 2017, 69: 2178
|
39 |
Alba C, Busse L E, List D J, et al. Thermodynamic aspects of the vitrification of toluene, and xylene isomers, and the fragility of liquid hydrocarbons [J]. J. Chem. Phys., 1990, 92: 617
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|