|
|
M50钢中 M2C一次碳化物高温转变机制 |
马芳1,2, 陆星宇3, 周丽娜2, 杜宁宇3, 类承帅3( ), 刘宏伟3( ), 李殿中3 |
1 哈尔滨工业大学 机电工程学院 哈尔滨 150001 2 中国航发哈尔滨轴承有限公司 哈尔滨 150025 3 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
High-Temperature Decomposition Mechanism of M2C Primary Carbide in M50 Steel |
MA Fang1,2, LU Xingyu3, ZHOU Lina2, DU Ningyu3, LEI Chengshuai3( ), LIU Hongwei3( ), LI Dianzhong3 |
1 School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China 2 AECC Harbin Bearing Co. Ltd., Harbin 150025, China 3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
马芳, 陆星宇, 周丽娜, 杜宁宇, 类承帅, 刘宏伟, 李殿中. M50钢中 M2C一次碳化物高温转变机制[J]. 金属学报, 2024, 60(7): 901-914.
Fang MA,
Xingyu LU,
Lina ZHOU,
Ningyu DU,
Chengshuai LEI,
Hongwei LIU,
Dianzhong LI.
High-Temperature Decomposition Mechanism of M2C Primary Carbide in M50 Steel[J]. Acta Metall Sin, 2024, 60(7): 901-914.
1 |
Yu F, Chen X P, Xu H F, et al. Current status of metallurgical quality and fatigue performance of rolling bearing steel and development direction of high-end bearing steel [J]. Acta Metall. Sin., 2020, 56: 513
doi: 10.11900/0412.1961.2019.00361
|
1 |
俞 峰, 陈兴品, 徐海峰 等. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向 [J]. 金属学报, 2020, 56: 513
|
2 |
Sun F L, Geng K, Yu F, et al. Relationship of inclusions and rolling contact fatigue life for ultra-clean bearing steel [J]. Acta Metall. Sin., 2020, 56: 693
doi: 10.11900/0412.1961.2019.00337
|
2 |
孙飞龙, 耿 克, 俞 峰 等. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系 [J]. 金属学报, 2020, 56: 693
doi: 10.11900/0412.1961.2019.00337
|
3 |
Du N Y. Research on carbide control and fatigue properties of M50 bearing steel [D]. Hefei: University of Science and Technology of China, 2022
|
3 |
杜宁宇. M50轴承钢碳化物调控与疲劳性能研究 [D]. 合肥: 中国科学技术大学, 2022
|
4 |
Li D Z, Wang P, Chen X Q, et al. Low-oxygen rare earth steels [J]. Nat. Mater., 2022, 21: 1137
doi: 10.1038/s41563-022-01352-9
pmid: 36075967
|
5 |
Yang C Y, Luan Y K, Li D Z, et al. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel [J]. J. Mater. Sci. Technol., 2019, 35: 1298
doi: 10.1016/j.jmst.2019.01.015
|
6 |
Chang L Z, Xu T, Su Y L, et al. Changes of cleanliness and carbide during vacuum preparation of stainless bearing steel [J]. Iron Steel, 2022, 57(10): 73
|
6 |
常立忠, 徐 涛, 苏云龙 等. 不锈轴承钢真空制备过程洁净度及碳化物变化 [J]. 钢铁, 2022, 57(10): 73
doi: 10.13228/j.boyuan.issn0449-749x.20220008
|
7 |
Li S S, Chen Y, Gong T Z, et al. Effect of cooling rate on the precipitation mechanism of primary carbide during solidification in high carbon-chromium bearing steel [J]. Acta Metall. Sin., 2022, 58: 1024
doi: 10.11900/0412.1961.2021.00024
|
7 |
李闪闪, 陈 云, 巩桐兆 等. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响 [J]. 金属学报, 2022, 58: 1024
doi: 10.11900/0412.1961.2021.00024
|
8 |
Guetard G, Toda-Caraballo I, Rivera-Díaz-Del-Castillo P E J. Damage evolution around primary carbides under rolling contact fatigue in VIM-VAR M50 [J]. Int. J. Fatigue, 2016, 91: 59
|
9 |
Hou X Q, Zhang Z, Liu C K, et al. Formation mechanism and influence of white etching area on contact fatigue spalling of M50 bearing steel [J]. Eng. Fail. Anal., 2022, 139: 106273
|
10 |
Iqbal A, King J E. The role of primary carbides in fatigue crack propagation in aeroengine bearing steels [J]. Int. J. Fatigue, 1990, 12: 234
|
11 |
Guan J, Wang L Q, Zhang Z Q, et al. Fatigue crack nucleation and propagation at clustered metallic carbides in M50 bearing steel [J]. Tribol. Int., 2018, 119: 165
|
12 |
Guo J, Zhao A M, Yang M S. Crack initiation mechanism of M50 bearing steel under high cycle fatigue [J]. Int. J. Fatigue, 2023, 174: 107587
|
13 |
Du N Y, Liu H H, Cao Y F, et al. Formation mechanism of MC and M2C primary carbides in as-cast M50 bearing steel [J]. Mater. Charact., 2021, 174: 111011
|
14 |
Hou Z Y, Liu W F, Xu B, et al. Formation and evolution mechanism of voids in M50 bearing steel during thermal deformation [J]. Acta Metall. Sin., 2024, 60: 57
doi: 10.11900/0412.1961.2022.00236
|
14 |
侯志远, 刘威峰, 徐 斌 等. M50轴承钢热变形过程中孔洞形成及演化机制 [J]. 金属学报, 2024, 60: 57
doi: 10.11900/0412.1961.2022.00236
|
15 |
Chaus A S, Sahul M. On origin of delta eutectoid carbide in M2 high-speed steel and its behaviour at high temperature [J]. Mater. Lett., 2019, 256: 126605
|
16 |
Pan F S, Wang W Q, Tang A T, et al. Phase transformation refinement of coarse primary carbides in M2 high speed steel [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 180
|
17 |
Fredriksson H, Hillert M, Nica M. Decomposition of the M2C carbide in high speed steel [J]. Scand. J. Metall., 1979, 8: 115
|
18 |
Lee E S, Park W J, Jung J Y, et al. Solidification microstructure and M2C carbide decomposition in a spray-formed high-speed steel [J]. Metall. Mater. Trans., 1998, 29A: 1395
|
19 |
Liu W F, Guo Y F, Cao Y F, et al. Transformation behavior of primary MC and M2C carbides in Cr4Mo4V steel [J]. J. Alloys Compd., 2021, 889: 161755
|
20 |
Zhou X F, Liu D, Zhu W L, et al. Morphology, microstructure and decomposition behavior of M2C carbides in high speed steel [J]. J. Iron Steel Res. Int., 2017, 24: 43
|
21 |
Liu W F, Cao Y F, Guo Y F, et al. Characteristics and transformation of primary carbides during austenitization in Cr4Mo4V bearing steel [J]. Mater. Charact., 2020, 169: 110636
|
22 |
Zheng Y. First-principles study of stability and mechanical property of MC and M2C in high speed steel [D]. Nanjing: Southeast University, 2018
|
22 |
郑 勇. 高速钢中MC和M2C的稳定性和力学性能的第一性原理研究 [D]. 南京: 东南大学, 2018
|
23 |
Guo J, Liu L G, Liu S, et al. Stability of eutectic carbide in Fe-Cr-Mo-W-V-C alloy by first-principles calculation [J]. Mater. Des., 2016, 106: 355
|
24 |
Sun C C, Zheng Y, Chen L L, et al. Thermodynamic stability and mechanical properties of (V, M)C (M = W, Mo and Cr) multicomponent carbides: A combined theoretical and experimental study [J]. J. Alloys Compd., 2022, 895: 162649
|
25 |
Jiang H W, Song Y R, Wu Y C, et al. Macrostructure, microstructure and mechanical properties evolution during 8Cr4Mo4V steel roller bearing inner ring forging process [J]. Mater. Sci. Eng., 2020, A798: 140196
|
26 |
Du N Y, Liu H H, Cao Y, et al. In situ investigation of the fracture of primary carbides and its mechanism in M50 steel[J]. Mater. Charact., 2022, 186: 111822
|
27 |
Niu J B, Qureshi M W, Ding Z F, et al. Effect of nitriding on the transformation of alloy carbides (VC and Mo2C) in 8Cr4Mo4V steel [J]. Appl. Surf. Sci., 2023, 610: 155561
|
28 |
Liu T, Luo L S, Zhang Y N, et al. Microstructure evolution and growth behaviors of faceted phase in directionally solidified Al-Y alloys II. Microstructure evolution of directionally solidified Al-53%Y peritectic alloy [J]. Acta Metall. Sin., 2016, 52: 866
|
28 |
刘 桐, 骆良顺, 张延宁 等. 定向凝固Al-Y合金组织演化规律及小平面相生长Ⅱ. Al-53%Y包晶合金组织演化规律 [J]. 金属学报, 2016, 52: 866
|
29 |
Wang F Q, Sun T, Wang M Q, et al. Research progress of Fe-Mn-Al-C system austenitic low density steel [J]. Iron Steel, 2021, 56(6): 89
|
29 |
王凤权, 孙 挺, 王毛球 等. Fe-Mn-Al-C系奥氏体基低密度钢的研究进展 [J]. 钢铁, 2021, 56(6): 89
doi: 10.13228/j.boyuan.issn0449-749x.20200566
|
30 |
Liu H H, Fu P X, Sun C, et al. Primary carbide refinement in AISI M50 steel by dislocation engineering via pre-deformation treatment [J]. Metall. Mater. Trans., 2023, 54A: 783
|
31 |
Li W Q, Xia Z B, Qi W T, et al. Controlling of morphology evolution of eutectic carbide in M2 high speed steel by directional solidification [J]. Shanghai Met., 2020, 42(1): 77
|
31 |
李婉琴, 夏智斌, 齐文涛 等. 定向凝固法控制M2高速钢中共晶碳化物形貌演变行为 [J]. 上海金属, 2020, 42(1): 77
|
32 |
Luo Y W, Guo H J, Sun X L, et al. Influence of the nitrogen content on the carbide transformation of AISI M42 high-speed steels during annealing [J]. Sci. Rep., 2018, 8: 4328
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|