Please wait a minute...
金属学报  2024, Vol. 60 Issue (7): 901-914    DOI: 10.11900/0412.1961.2023.00106
  研究论文 本期目录 | 过刊浏览 |
M50钢中 M2C一次碳化物高温转变机制
马芳1,2, 陆星宇3, 周丽娜2, 杜宁宇3, 类承帅3(), 刘宏伟3(), 李殿中3
1 哈尔滨工业大学 机电工程学院 哈尔滨 150001
2 中国航发哈尔滨轴承有限公司 哈尔滨 150025
3 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
High-Temperature Decomposition Mechanism of M2C Primary Carbide in M50 Steel
MA Fang1,2, LU Xingyu3, ZHOU Lina2, DU Ningyu3, LEI Chengshuai3(), LIU Hongwei3(), LI Dianzhong3
1 School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
2 AECC Harbin Bearing Co. Ltd., Harbin 150025, China
3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

马芳, 陆星宇, 周丽娜, 杜宁宇, 类承帅, 刘宏伟, 李殿中. M50钢中 M2C一次碳化物高温转变机制[J]. 金属学报, 2024, 60(7): 901-914.
Fang MA, Xingyu LU, Lina ZHOU, Ningyu DU, Chengshuai LEI, Hongwei LIU, Dianzhong LI. High-Temperature Decomposition Mechanism of M2C Primary Carbide in M50 Steel[J]. Acta Metall Sin, 2024, 60(7): 901-914.

全文: PDF(5796 KB)   HTML
摘要: 

以双真空冶炼的M50钢为研究对象,通过SEM、EPMA及TEM对铸态及高温扩散后M50钢中的一次碳化物进行了详细表征,系统研究了合金成分及温度对铸态M2C一次碳化物高温转变机制的影响,揭示了在1160~1250℃下M2C一次碳化物的高温分解机制。研究结果表明:M50钢中的M2C一次碳化物主要有3种形态,分别是棒状、片层状与块状,成分上表现出Fe元素含量依次降低、Mo元素含量依次升高的分布规律。合金成分的差异导致M2C一次碳化物在1160~1250℃高温扩散处理时表现出不同的热稳定性及不同的组织转变机制。其中,1160~1180℃保温时Fe元素含量较高的M2C碳化物快速回溶到基体中,部分M2C碳化物转变为MC碳化物,MC碳化物长大速度较慢;1210℃保温时M2C碳化物几乎完全溶解,一次碳化物数量明显减少,但部分MC碳化物快速长大,形成球形大尺寸MC碳化物;1250℃保温时,M2C碳化物完全溶解,未发现大尺寸MC碳化物,但存在基体组织熔化现象,此时基体中的Mo、V合金元素向形成的液相中扩散,并在凝固后形成呈球形分布的新生M2C碳化物。

关键词 M50钢M2C一次碳化物高温扩散转变机制    
Abstract

M50 steel is primarily used for manufacturing the main shaft bearings of aero engines. However, the fatigue property of M50 steel affects the service life of shaft bearings owing to their operation in the environment with high temperature, high rotation speed, and high contact stress. Inclusions and large-sized carbides are proved to be the primary reasons that cause fatigue cracking. Nevertheless, inclusions in M50 steel and fatigue failure due to inclusions are substantially reduced with the rapid development of metallurgical technology and metallurgical equipment in recent years. M50 steel contains high fractions of Cr, Mo, and V elements, which are easily enriched and can form primary carbides. The primary carbides in M50 steel are hard and brittle and cause stress concentration under external load, thereby accelerating the initiation and propagation of fatigue cracks. Currently, the large-sized primary carbides in M50 steel play an important role in reducing the service life of bearings and have attracted substantially research attention. The present investigation focuses on the decomposition mechanism of large-sized M2C primary carbide in M50 steel to reveal the carbide-refinement mechanism during high-temperature heat treatment. In addition, M2C primary carbide in M50 steel was systematically characterized by SEM, EPMA, and TEM, and its decomposition mechanism at 1160-1250oC was studied. The difference in chemical composition of different M2C primary carbides and its effect on the decomposition mechanism were also explored. Three forms of M2C carbides in M50 steel were revealed: the rod-like carbide, the lamellar-like carbide, and the block-like carbide. In these three M2C carbides, the content of Fe increased, while the content of Mo decreased successively. The difference in chemical composition and morphology of these three M2C carbides led to the different microstructure-evolution process when heat-treated at elevated temperature. When the steel was heat-treated at 1160-1180oC, only the M2C carbides with high Fe content decomposed and a few of the carbides transformed to MC carbide. The growth rate of MC carbide was extremely low at this temperature. When the steel was heat-treated at 1210oC, most of the M2C carbides decomposed after 20 h. The growth rate of MC carbide also increased rapidly, and a large amount of large-sized MC carbides were found. Further heat treatment of steel at 1250oC resulted in the decomposition of all M2C carbides and the absence of large-sized primary carbides in the microstructure. However, a large amount of newly born M2C carbide, formed due to the melting of the matrix and re-solidification, were found in the microstructure.

Key wordsM50 steel    primary carbide    high-temperature diffusion treatment    transformation mechanism
收稿日期: 2023-03-14     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划项目(2018YFA0702900);国家自然科学基金项目(52031013);中国航发自主创新专项资金项目(ZZCX-2020-027)
通讯作者: 类承帅,cslei@imr.ac.cn,主要从事轴承钢研发与应用研究;
刘宏伟,hwliu@imr.ac.cn,主要从事高品质特殊钢研发与应用研究
Corresponding author: LEI Chengshuai, Tel: 17824032796, E-mail: cslei@imr.ac.cn;
作者简介: 马 芳,男,1980年生,博士生
图1  M50钢铸态组织SEM-BSE像、元素的EPMA面分布图以及一次碳化物Kikuchi衍射花样
图2  3种不同形态M2C一次碳化物的SEM像
PointFeCrMoVC
126.1912.1940.499.7111.42
222.8210.1845.0510.1511.80
317.1711.3247.9911.3712.15
422.4110.9644.7510.3011.58
521.4111.7144.4011.1611.32
表1  图2a中片层状一次碳化物的EDS结果 (mass fraction / %)
PointFeCrMoVC
126.0614.1241.129.179.41
234.5110.0738.978.238.23
333.489.3839.617.999.32
436.259.7338.177.708.15
522.9310.3445.7711.228.64
表2  图2b中棒状一次碳化物的EDS结果 (mass fraction / %)
PointFeCrMoVC
18.0211.7555.0912.6212.52
28.7311.7654.5112.5912.41
36.2912.7156.1412.4612.40
49.0412.0354.3512.4712.11
510.2812.4753.4611.6112.18
表3  图2c中块状一次碳化物的EDS结果 (mass fraction / %)
图3  经1160℃保温20 h高温扩散处理后M50钢微观组织的SEM-BSE像
图4  经1160℃保温20 h高温扩散处理后M50钢中残留M2C碳化物以及新生MC碳化物的形貌
CarbidePointFeCrMoVC
M2C15.619.0758.8714.7211.73
26.689.4955.8214.5413.47
35.9010.5257.0713.5712.94
46.879.5356.2014.6012.80
55.848.9657.7714.1013.33
MC63.035.5638.3433.5419.53
72.795.6138.3437.4915.77
85.275.5035.3338.3215.58
表4  图4中M2C与MC碳化物的EDS结果 (mass fraction / %)
图5  经1160℃保温20 h高温扩散处理后M50钢中片层状M2C碳化物与新生MC碳化物界面结构及V、Mo元素EDS线扫描图
图6  M2C碳化物与新生MC碳化物界面结构的高角度环形暗场扫描透射电子显微镜(HAADF-STEM)像、快速Fourier变换(FFT)及EDS面分布图
AreaCVCrFeMo
13.9517.205.663.7769.42
26.3939.744.162.0747.64
表5  图6c中M2C与MC的EDS结果 (mass fraction / %)
图7  经1180℃保温20 h高温扩散处理后M50钢微观组织的SEM-BSE像
图8  经1210℃保温20 h高温扩散处理后M50钢微观组织的SEM-BSE像
图9  经1250℃保温20 h高温扩散处理后M50钢微观组织的SEM-BSE像及EDS分析
图10  1250℃保温20 h后新生M2C碳化物的SEM-BSE像及EDS面分布图
图11  经不同温度高温扩散处理20 h的M50钢锻造棒材中大尺寸碳化物的SEM-BSE像
图12  M2C碳化物在1160~1180℃时的分解与转变机制示意图
图13  M2C碳化物在1210℃时的分解与转变机制示意图
图14  M2C碳化物在1250℃时的分解与转变机制示意图
1 Yu F, Chen X P, Xu H F, et al. Current status of metallurgical quality and fatigue performance of rolling bearing steel and development direction of high-end bearing steel [J]. Acta Metall. Sin., 2020, 56: 513
doi: 10.11900/0412.1961.2019.00361
1 俞 峰, 陈兴品, 徐海峰 等. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向 [J]. 金属学报, 2020, 56: 513
2 Sun F L, Geng K, Yu F, et al. Relationship of inclusions and rolling contact fatigue life for ultra-clean bearing steel [J]. Acta Metall. Sin., 2020, 56: 693
doi: 10.11900/0412.1961.2019.00337
2 孙飞龙, 耿 克, 俞 峰 等. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系 [J]. 金属学报, 2020, 56: 693
doi: 10.11900/0412.1961.2019.00337
3 Du N Y. Research on carbide control and fatigue properties of M50 bearing steel [D]. Hefei: University of Science and Technology of China, 2022
3 杜宁宇. M50轴承钢碳化物调控与疲劳性能研究 [D]. 合肥: 中国科学技术大学, 2022
4 Li D Z, Wang P, Chen X Q, et al. Low-oxygen rare earth steels [J]. Nat. Mater., 2022, 21: 1137
doi: 10.1038/s41563-022-01352-9 pmid: 36075967
5 Yang C Y, Luan Y K, Li D Z, et al. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel [J]. J. Mater. Sci. Technol., 2019, 35: 1298
doi: 10.1016/j.jmst.2019.01.015
6 Chang L Z, Xu T, Su Y L, et al. Changes of cleanliness and carbide during vacuum preparation of stainless bearing steel [J]. Iron Steel, 2022, 57(10): 73
6 常立忠, 徐 涛, 苏云龙 等. 不锈轴承钢真空制备过程洁净度及碳化物变化 [J]. 钢铁, 2022, 57(10): 73
doi: 10.13228/j.boyuan.issn0449-749x.20220008
7 Li S S, Chen Y, Gong T Z, et al. Effect of cooling rate on the precipitation mechanism of primary carbide during solidification in high carbon-chromium bearing steel [J]. Acta Metall. Sin., 2022, 58: 1024
doi: 10.11900/0412.1961.2021.00024
7 李闪闪, 陈 云, 巩桐兆 等. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响 [J]. 金属学报, 2022, 58: 1024
doi: 10.11900/0412.1961.2021.00024
8 Guetard G, Toda-Caraballo I, Rivera-Díaz-Del-Castillo P E J. Damage evolution around primary carbides under rolling contact fatigue in VIM-VAR M50 [J]. Int. J. Fatigue, 2016, 91: 59
9 Hou X Q, Zhang Z, Liu C K, et al. Formation mechanism and influence of white etching area on contact fatigue spalling of M50 bearing steel [J]. Eng. Fail. Anal., 2022, 139: 106273
10 Iqbal A, King J E. The role of primary carbides in fatigue crack propagation in aeroengine bearing steels [J]. Int. J. Fatigue, 1990, 12: 234
11 Guan J, Wang L Q, Zhang Z Q, et al. Fatigue crack nucleation and propagation at clustered metallic carbides in M50 bearing steel [J]. Tribol. Int., 2018, 119: 165
12 Guo J, Zhao A M, Yang M S. Crack initiation mechanism of M50 bearing steel under high cycle fatigue [J]. Int. J. Fatigue, 2023, 174: 107587
13 Du N Y, Liu H H, Cao Y F, et al. Formation mechanism of MC and M2C primary carbides in as-cast M50 bearing steel [J]. Mater. Charact., 2021, 174: 111011
14 Hou Z Y, Liu W F, Xu B, et al. Formation and evolution mechanism of voids in M50 bearing steel during thermal deformation [J]. Acta Metall. Sin., 2024, 60: 57
doi: 10.11900/0412.1961.2022.00236
14 侯志远, 刘威峰, 徐 斌 等. M50轴承钢热变形过程中孔洞形成及演化机制 [J]. 金属学报, 2024, 60: 57
doi: 10.11900/0412.1961.2022.00236
15 Chaus A S, Sahul M. On origin of delta eutectoid carbide in M2 high-speed steel and its behaviour at high temperature [J]. Mater. Lett., 2019, 256: 126605
16 Pan F S, Wang W Q, Tang A T, et al. Phase transformation refinement of coarse primary carbides in M2 high speed steel [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 180
17 Fredriksson H, Hillert M, Nica M. Decomposition of the M2C carbide in high speed steel [J]. Scand. J. Metall., 1979, 8: 115
18 Lee E S, Park W J, Jung J Y, et al. Solidification microstructure and M2C carbide decomposition in a spray-formed high-speed steel [J]. Metall. Mater. Trans., 1998, 29A: 1395
19 Liu W F, Guo Y F, Cao Y F, et al. Transformation behavior of primary MC and M2C carbides in Cr4Mo4V steel [J]. J. Alloys Compd., 2021, 889: 161755
20 Zhou X F, Liu D, Zhu W L, et al. Morphology, microstructure and decomposition behavior of M2C carbides in high speed steel [J]. J. Iron Steel Res. Int., 2017, 24: 43
21 Liu W F, Cao Y F, Guo Y F, et al. Characteristics and transformation of primary carbides during austenitization in Cr4Mo4V bearing steel [J]. Mater. Charact., 2020, 169: 110636
22 Zheng Y. First-principles study of stability and mechanical property of MC and M2C in high speed steel [D]. Nanjing: Southeast University, 2018
22 郑 勇. 高速钢中MC和M2C的稳定性和力学性能的第一性原理研究 [D]. 南京: 东南大学, 2018
23 Guo J, Liu L G, Liu S, et al. Stability of eutectic carbide in Fe-Cr-Mo-W-V-C alloy by first-principles calculation [J]. Mater. Des., 2016, 106: 355
24 Sun C C, Zheng Y, Chen L L, et al. Thermodynamic stability and mechanical properties of (V, M)C (M = W, Mo and Cr) multicomponent carbides: A combined theoretical and experimental study [J]. J. Alloys Compd., 2022, 895: 162649
25 Jiang H W, Song Y R, Wu Y C, et al. Macrostructure, microstructure and mechanical properties evolution during 8Cr4Mo4V steel roller bearing inner ring forging process [J]. Mater. Sci. Eng., 2020, A798: 140196
26 Du N Y, Liu H H, Cao Y, et al. In situ investigation of the fracture of primary carbides and its mechanism in M50 steel[J]. Mater. Charact., 2022, 186: 111822
27 Niu J B, Qureshi M W, Ding Z F, et al. Effect of nitriding on the transformation of alloy carbides (VC and Mo2C) in 8Cr4Mo4V steel [J]. Appl. Surf. Sci., 2023, 610: 155561
28 Liu T, Luo L S, Zhang Y N, et al. Microstructure evolution and growth behaviors of faceted phase in directionally solidified Al-Y alloys II. Microstructure evolution of directionally solidified Al-53%Y peritectic alloy [J]. Acta Metall. Sin., 2016, 52: 866
28 刘 桐, 骆良顺, 张延宁 等. 定向凝固Al-Y合金组织演化规律及小平面相生长Ⅱ. Al-53%Y包晶合金组织演化规律 [J]. 金属学报, 2016, 52: 866
29 Wang F Q, Sun T, Wang M Q, et al. Research progress of Fe-Mn-Al-C system austenitic low density steel [J]. Iron Steel, 2021, 56(6): 89
29 王凤权, 孙 挺, 王毛球 等. Fe-Mn-Al-C系奥氏体基低密度钢的研究进展 [J]. 钢铁, 2021, 56(6): 89
doi: 10.13228/j.boyuan.issn0449-749x.20200566
30 Liu H H, Fu P X, Sun C, et al. Primary carbide refinement in AISI M50 steel by dislocation engineering via pre-deformation treatment [J]. Metall. Mater. Trans., 2023, 54A: 783
31 Li W Q, Xia Z B, Qi W T, et al. Controlling of morphology evolution of eutectic carbide in M2 high speed steel by directional solidification [J]. Shanghai Met., 2020, 42(1): 77
31 李婉琴, 夏智斌, 齐文涛 等. 定向凝固法控制M2高速钢中共晶碳化物形貌演变行为 [J]. 上海金属, 2020, 42(1): 77
32 Luo Y W, Guo H J, Sun X L, et al. Influence of the nitrogen content on the carbide transformation of AISI M42 high-speed steels during annealing [J]. Sci. Rep., 2018, 8: 4328
[1] 张竟文, 余黎明, 刘晨曦, 丁然, 刘永长. Cr马氏体耐热钢的协同强化机制及形变热处理应用[J]. 金属学报, 2024, 60(6): 713-730.
[2] 杨伟阳, 黎先浩, 赵鹏飞, 于海彬, 赵松山, 罗海文. 取向硅钢不同常化工艺下组织及抑制剂的变化[J]. 金属学报, 2024, 60(5): 605-615.
[3] 吴文伟 向超 张涛 邹志航 孙勇飞 刘金鹏 张涛 韩恩厚. 热处理工艺对选区激光熔化成型18Ni300马氏体时效钢微观组织演变及力学性能的影响[J]. 金属学报, 0, (): 0-0.
[4] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[5] 陈胜虎, 王琪玉, 姜海昌, 戎利建. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响[J]. 金属学报, 2024, 60(3): 367-376.
[6] 张宇, 吴盼, 贾东昇, 黄林科, 贾晓晴, 刘峰. 基于稳定性的第三代先进高强钢设计[J]. 金属学报, 2024, 60(2): 143-153.
[7] 张超, 熊志平, 杨德振, 程兴旺. 非均质Mn分布对淬火-配分钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(1): 69-79.
[8] 谢昂 陈胜虎 姜海昌 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 0, (): 0-0.
[9] 宋逸思 廖瑜 李传维 陈益华 顾剑锋. 逆转变奥氏体对0Cr16Ni5Mo1超级马氏体不锈钢低温冲击韧性的影响[J]. 金属学报, 0, (): 0-0.
[10] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[11] 张文彬 李小龙 郝硕 刘胜杰 蔡星周 陈雷 金淼. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si的微裂纹形核及扩展研究[J]. 金属学报, 0, (): 0-0.
[12] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[13] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[14] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[15] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.