Please wait a minute...
金属学报  2025, Vol. 61 Issue (5): 687-698    DOI: 10.11900/0412.1961.2023.00100
  研究论文 本期目录 | 过刊浏览 |
逆转变奥氏体对0Cr16Ni5Mo1超级马氏体不锈钢低温冲击韧性的影响
宋逸思1,2, 廖瑜1, 李传维1,2(), 陈益华1, 顾剑锋1,2()
1 上海交通大学 材料科学与工程学院 材料改性与数值模拟研究所 上海 200240
2 上海交通大学 材料科学与工程学院 上海市激光制造与材料改性重点实验室 上海 200240
Effects of Reversed Austenite on the Cryogenic Impact Toughness of 0Cr16Ni5Mo1 Super Martensitic Stainless Steel
SONG Yisi1,2, LIAO Yu1, LI Chuanwei1,2(), CHEN Yihua1, GU Jianfeng1,2()
1 Institute of Materials Modification and Modelling, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

宋逸思, 廖瑜, 李传维, 陈益华, 顾剑锋. 逆转变奥氏体对0Cr16Ni5Mo1超级马氏体不锈钢低温冲击韧性的影响[J]. 金属学报, 2025, 61(5): 687-698.
Yisi SONG, Yu LIAO, Chuanwei LI, Yihua CHEN, Jianfeng GU. Effects of Reversed Austenite on the Cryogenic Impact Toughness of 0Cr16Ni5Mo1 Super Martensitic Stainless Steel[J]. Acta Metall Sin, 2025, 61(5): 687-698.

全文: PDF(5319 KB)   HTML
摘要: 

逆转变奥氏体对超级马氏体不锈钢的韧塑性协同具有重要作用,其热稳定性和含量的调控是提高材料低温韧性的关键。本工作以0Cr16Ni5Mo1超级马氏体不锈钢为研究对象,测试了淬火+回火(QT)和淬火+临界区退火+回火(QIT)工艺处理后的室温力学性能以及-196 ℃低温冲击韧性,利用热膨胀仪研究热处理过程中的逆相变行为,利用XRD、EBSD和TEM表征显微组织,深入研究了逆转变奥氏体对低温冲击韧性的影响。结果表明,0Cr16Ni5Mo1超级马氏体不锈钢经1100 ℃淬火可以得到全马氏体组织;直接进行620 ℃回火后的QT试样在马氏体板条界面处形成体积分数为16.4%的逆转变奥氏体,经-196 ℃深冷处理后逆转变奥氏体的体积分数下降至5.0%,低温冲击韧性仅有36.4 J/cm2,表现为准解理断裂。QIT工艺热处理过程中,680 ℃临界区退火后的室温组织主要由贫Ni的回火马氏体和富Ni的新鲜马氏体组成,经后续620 ℃回火可形成体积分数为23.8%的逆转变奥氏体,与QT试样相比,室温下塑性提升了6%,而强度仅降低7%。临界区退火使得后续回火过程中形成的逆转变奥氏体内平均Ni含量提高至13% (质量分数),具有更优异的热稳定性,经-196 ℃处理后仍有18.3% (体积分数)的逆转变奥氏体可以稳定存在。这部分逆转变奥氏体在冲击过程中会发生马氏体相变而吸收冲击能量,使经过QIT工艺处理后的0Cr16Ni5Mo1超级马氏体不锈钢在-196 ℃拥有高达115.4 J/cm2的冲击韧性,其冲击断口以韧窝为主,同时存在少许准解理形貌,呈混合断裂模式。

关键词 超级马氏体不锈钢低温冲击韧性逆转变奥氏体临界区退火    
Abstract

The reversed austenite obtained through a tempering process can effectively improve the toughness and ductility of super martensitic stainless steel (SMSS). Overcoming the trade-off between thermal stability and quantity of the reversed austenite is the key to improving the cryogenic impact toughness of SMSS. In this study, the mechanical properties at room temperature and cryogenic impact toughness at -196 oC of 0Cr16Ni5Mo1 SMSS after quenching and tempering (QT) were investigated, along with quenching, intercritical annealing, and tempering (QIT) processes. Reverse transformation behavior during the heat treatment was studied using a thermal dilatometer, and the microstructure evolution was characterized by XRD, EBSD, and TEM. Additionally, the effect of reversed austenite on cryogenic impact toughness was extensively analyzed. The results showed that full martensite was obtained in 0Cr16Ni5Mo1 SMSS after quenching at 1100 oC. The volume fraction of reversed austenite in the QT samples tempered at 620 oC was found to be 16.4%, which decreased to 5.0% after cryogenic treatment with liquid nitrogen, and the cryogenic impact toughness of the QT samples was obtained to be only 36.4 J/cm2. The microstructure of samples after intercritical annealing at 680 oC mainly consisted of Ni-poor tempered martensite and Ni-rich fresh martensite. Furthermore, the volume fraction of reversed austenite in the QIT samples increased to 23.8% during the subsequent tempering process at 620 oC while the plasticity increased by 6% and the strength decreased by 7% at room temperature. The average Ni content of reversed austenite in the QIT samples reached 13% (mass fraction), which considerably improved the thermal stability of reversed austenite. Moreover, ~18.3% (volume fraction) reversed austenite remained stable in QIT samples at -196 oC, thereby substantially improving the cryogenic impact toughness to 115.4 J/cm2 by absorbing the impact energy through transformation into martensite. The impact fracture of the QIT samples was dominated by dimples, but there remained a little quasicleavage morphology indicating a mixed fracture mode.

Key wordssuper martensitic stainless steel    cryogenic impact toughness    reversed austenite    intercritical annealing
收稿日期: 2023-03-09     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(52171042);国家科技重大专项项目(J2019-VI-0004-0117)
通讯作者: 李传维,li-chuanwei@sjtu.edu.cn,主要从事金属材料热处理及其数值模拟的研究;
顾剑锋,gujf@sjtu.edu.cn,主要从事材料微观结构和力学行为的多尺度模拟及其工程应用研究
Corresponding author: LI Chuanwei, associate professor, Tel: (021)34201934, E-mail: li-chuanwei@sjtu.edu.cn;
GU Jianfeng, professor, Tel: (021)34203743, E-mail: gujf@sjtu.edu.cn
作者简介: 宋逸思,男,1994年生,博士
图1  淬火+回火(QT)和淬火+临界区退火+回火(QIT)热处理工艺示意图
图2  不同热处理条件下0Cr16Ni5Mo1超级马氏体不锈钢显微组织的SEM像
图3  0Cr16Ni5Mo1超级马氏体不锈钢淬火态试样与QT试样显微组织的TEM分析
图4  淬火+临界区退火(QI)试样与QIT试样显微组织的TEM分析
图5  不同热处理条件下0Cr16Ni5Mo1超级马氏体不锈钢室温组织的XRD谱
图6  不同热处理条件下0Cr16Ni5Mo1超级马氏体不锈钢的工程应力-应变曲线
图7  不同热处理条件下0Cr16Ni5Mo1超级马氏体不锈钢室温与液氮温度下的示波冲击曲线
图8  不同热处理条件下0Cr16Ni5Mo1超级马氏体不锈钢在室温与液氮温度下的冲击功
Sample

σ0.2

MPa

σb

MPa

δ

%

ak / (J·cm-2)
25 oC-196 oC
As-quenched1050 ± 231208 ± 288.3 ± 0.4114.4 ± 5.216.4 ± 4.6
QT717 ± 8882 ± 1118.8 ± 1.5158.6 ± 3.636.4 ± 4.2
QI745 ± 16919 ± 1013.9 ± 0.4145.2 ± 3.227.4 ± 3.0
QIT668 ± 13857 ± 1220.0 ± 1.2174.0 ± 4.4115.4 ± 4.0
表1  不同热处理条件下0Cr16Ni5Mo1超级马氏体不锈钢的力学性能
图9  QT和QIT试样在室温和液氮温度下冲击断口形貌的SEM像
图10  QT与QIT试样的热膨胀曲线
图11  在620和680 ℃时0Cr16Ni5Mo1超级马氏体不锈钢中bcc相和fcc相的Gibbs自由能随Ni含量的变化曲线
图12  QT和QIT试样经液氮深冷后的XRD谱
图13  QT和QIT试样-196 ℃冲击断口纵截面的SEM像及不同区域的EBSD相图
1 Lei X W, Feng Y R, Zhang J X, et al. Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel [J]. Electrochim. Acta, 2016, 191: 640
2 Anselmo N, May J E, Mariano N A, et al. Corrosion behavior of supermartensitic stainless steel in aerated and CO2-saturated synthetic seawater [J]. Mater. Sci. Eng., 2006, A428: 73
3 Mesquita T J, Chauveau E, Mantel M, et al. Corrosion and metallurgical investigation of two supermartensitic stainless steels for oil and gas environments [J]. Corros. Sci., 2014, 81: 152
4 Bilmes P D, Solari M, Llorente C L. Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals [J]. Mater. Charact., 2001, 46: 285
5 Zou D N, Han Y, Yan D N, et al. Hot workability of 00Cr13Ni5Mo2 supermartensitic stainless steel [J]. Mater. Des., 2011, 32: 4443
6 Della Rovere C A, Ribeiro C R, Silva R, et al. Microstructural and mechanical characterization of radial friction welded supermartensitic stainless steel joints [J]. Mater. Sci. Eng., 2013, A586: 86
7 Woollin P, Kostrivas A. Use of supermartensitic stainless steel pipe for offshore flowline applications [A]. 25th International Conference on Offshore Mechanics and Arctic Engineering [C]. Hamburg: ASME, 2006: 565
8 Liu Z B, Liang J X, Su J, et al. Research and application progress in ultra-high strength stainless steel [J]. Acta Metall. Sin., 2020, 56: 549
8 刘振宝, 梁剑雄, 苏 杰 等. 高强度不锈钢的研究及发展现状 [J]. 金属学报, 2020, 56: 549
doi: 10.11900/0412.1961.2019.00453
9 Ye D, Li J, Jiang W, et al. Effect of Cu addition on microstructure and mechanical properties of 15%Cr super martensitic stainless steel [J]. Mater. Des., 2012, 41: 16
10 Song Y Y, Ping D H, Yin F X, et al. Microstructural evolution and low temperature impact toughness of a Fe-13%Cr-4%Ni-Mo martensitic stainless steel [J]. Mater. Sci. Eng., 2010, A527: 614
11 Song Y Y, Li X Y, Rong L J, et al. The influence of tempering temperature on the reversed austenite formation and tensile properties in Fe-13%Cr-4%Ni-Mo low carbon martensite stainless steels [J]. Mater. Sci. Eng., 2011, A528: 4075
12 Ma X P, Wang L J, Liu C M, et al. Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel [J]. Mater. Sci. Eng., 2012, A539: 271
13 Tabatabae B A, Ashrafizadeh F, Hassanli A M. Influence of retained austenite on the mechanical properties of low carbon martensitic stainless steel castings [J]. ISIJ Int., 2011, 51: 471
14 Yang D. Effect of tempering process on low temperature impact toughness of 13Cr4NiMo Low carbon martensitic stainless steel [D]. Nanning: Guangxi University, 2020
14 杨 东. 回火工艺对13Cr4NiMo低碳马氏体不锈钢低温冲击韧性的影响 [D]. 南宁: 广西大学, 2020
15 Song Y Y. Formation mechanism of the reversed austenite in 0Cr13Ni4Mo stainless steel [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011
15 宋元元. 0Cr13Ni4Mo不锈钢中逆变奥氏体的相变机制 [D]. 沈阳: 中国科学院金属研究所, 2011
16 Wen Z M. Study on composition, microstructure and properties of high strength martensitic stainless steel used in low-temperature environment [D]. Kunming: Kunming University of Science and Technology, 2011
16 文志旻. 低温用高强度马氏体不锈钢成分、组织及性能的研究 [D]. 昆明: 昆明理工大学, 2011
17 Qiu X Y F, Yang Z Y, Ding Y L. Solid solution treatment for improving cryogenic temperature toughness of Cr-Ni-Mo-Ti maraging stainless steel [J]. Heat Treat. Met., 2022, 47(1): 44
17 邱旭扬帆, 杨卓越, 丁雅莉. 提高Cr-Ni-Mo-Ti马氏体时效不锈钢超低温韧性的固溶处理工艺 [J]. 金属热处理, 2022, 47(1): 44
doi: 10.13251/j.issn.0254-6051.2022.01.008
18 Ji Y R, Yang Z Y, Tan H L, et al. Heat treatment process for improving cryogenic toughness of Cr-Ni-Co-Mo maraging stainless steel [J]. Heat Treat. Met., 2021, 46(10): 133
doi: 10.13251/j.issn.0254-6051.2021.10.023
18 吉昱睿, 杨卓越, 谭红琳 等. 提高Cr-Ni-Co-Mo马氏体时效不锈钢超低温韧性的热处理工艺 [J]. 金属热处理, 2021, 46(10): 133
doi: 10.13251/j.issn.0254-6051.2021.10.023
19 Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta Mater., 2011, 59: 4002
20 Shi J, Sun X J, Wang M Q, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite [J]. Scr. Mater., 2010, 63: 815
21 Han G, Shang C J, Xie Z J, et al. On the thermal and mechanical stability of reverted austenite by intercritical tempering [J]. Mater. Lett., 2021, 291: 129457
22 Wang C J, Liang J X, Liu Z B, et al. Effect of metastable austenite on mechanical property and mechanism in cryogenic steel applied in oceaneering [J]. Acta Metall. Sin., 2016, 52: 385
22 王长军, 梁剑雄, 刘振宝 等. 亚稳奥氏体对低温海工用钢力学性能的影响与机理 [J]. 金属学报, 2016, 52: 385
doi: 10.11900/0412.1961.2015.00312
23 Hou W, Liu Q D, Gu J F. Nano-sized austenite and Cu precipitates formed by using intercritical tempering plus tempering and their effect on the mechanical property in a low carbon Cu bearing 7Ni steel [J]. Mater. Sci. Eng., 2020, A780: 139186
24 Song Y Y, Li X Y, Rong L J, et al. Formation of the reversed austenite during intercritical tempering in a Fe-13%Cr-4%Ni-Mo martensitic stainless steel [J]. Mater. Lett., 2010, 64: 1411
25 Hu J, Du L X, Wang J J, et al. Structure-mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling [J]. Mater. Sci. Eng., 2013, A585: 197
26 Zhang S H, Wang P, Li D Z, et al. Investigation of the evolution of retained austenite in Fe-13%Cr-4%Ni martensitic stainless steel during intercritical tempering [J]. Mater. Des., 2015, 84: 385
27 Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321
28 Matsuoka Y, Iwasaki T, Nakada N, et al. Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel [J]. ISIJ Int., 2013, 53: 1224
29 Kang J, Wang C, Wang G D. Microstructural characteristics and impact fracture behavior of a high-strength low-alloy steel treated by intercritical heat treatment [J]. Mater. Sci. Eng., 2012, A553: 96
[1] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[2] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[3] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[4] 王学林,董利明,杨玮玮,张宇,王学敏,尚成嘉. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响*[J]. 金属学报, 2016, 52(6): 649-660.
[5] 邓洁,马佳伟,许以阳,沈耀. 马氏体的分布对双相钢微观变形行为和力学性能的影响[J]. 金属学报, 2015, 51(9): 1092-1100.
[6] 李坤,单际国,王春旭,田志凌. T250马氏体时效钢激光焊接-时效处理接头的强韧性*[J]. 金属学报, 2015, 51(8): 904-912.
[7] 温涛, 胡小锋 宋元元, 闫德胜, 戎利建. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响*[J]. 金属学报, 2014, 50(4): 447-453.
[8] 高古辉 张寒 白秉哲. 回火温度对Mn系低碳贝氏体钢的低温韧性的影响[J]. 金属学报, 2011, 47(5): 513-519.
[9] 周倩青 翟玉春. 高强高韧FV520B马氏体钢的时效工艺优化[J]. 金属学报, 2009, 45(10): 1249-1254.
[10] 尹钟大;李晓东;李海滨;来忠红. 18Ni马氏体时效钢时效机理的研究[J]. 金属学报, 1995, 31(1): 7-13.