Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2023.00100
  本期目录 | 过刊浏览 |
逆转变奥氏体对0Cr16Ni5Mo1超级马氏体不锈钢低温冲击韧性的影响
宋逸思1,2,廖瑜1,李传维1,2,陈益华1,顾剑锋1,2
1. 上海交通大学 材料科学与工程学院 材料改性与数值模拟研究所  上海 200240
2. 上海交通大学 材料科学与工程学院 上海市激光制造与材料改性重点实验室  上海 200240
Effects of Reversed Austenite on the Cryogenic Impact Toughness of 0Cr16Ni5Mo1 Super Martensitic Stainless Steel
全文: PDF(2012 KB)  
摘要: 逆转变奥氏体对超级马氏体不锈钢的韧塑性协同具有重要作用,其热稳定性与含量的调控是提高材料低温韧性的关键。本工作以0Cr16Ni5Mo1超级马氏体不锈钢为对象,测试了淬火+回火(QT)与淬火+临界区退火+回火(QIT)工艺处理后的室温力学性能以及-196℃低温冲击韧性,利用热膨胀仪研究热处理过程中的逆相变行为,通过XRD、EBSD和TEM表征显微组织,深入研究了逆转变奥氏体对低温冲击韧性的影响。结果表明,0Cr16Ni5Mo1超级马氏体不锈钢经1100℃淬火可以得到全马氏体组织;直接进行620℃回火后的QT试样在马氏体板条界面处形成体积分数为16.4%的逆转变奥氏体,经液氮深冷处理后逆转变奥氏体的体积分数下降至5.0%,低温冲击韧性仅有36.4 J/cm2,表现为准解理断裂。QIT工艺热处理过程中,680℃临界区退火后的室温组织主要由贫Ni的回火马氏体与富Ni的新鲜马氏体组成,经后续620℃回火可形成23.8% (体积分数)的逆转变奥氏体,与QT试样相比,室温下塑性提升了6%,而强度仅降低7%。临界区退火使得后续回火过程中形成的逆转变奥氏体内平均Ni含量提高至13% (质量分数),具有更优异的热稳定性,经液氮温度处理后仍有18.3% (体积分数)的逆转变奥氏体可以稳定存在。这部分逆转变奥氏体在冲击过程中会发生马氏体相变而吸收冲击能量,使经过QIT工艺处理后的0Cr16Ni5Mo1超级马氏体不锈钢在-196℃拥有高达115.4J/cm2的冲击韧性,其冲击断口以韧窝为主,同时存在少许准解理形貌,呈混合断裂模式。
关键词 超级马氏体不锈钢低温韧性逆转变奥氏体临界区退火    
Abstract:The reversed austenite obtained through a tempering process can effectively improve the toughness and ductility of super martensitic stainless steel (SMSS). Overcoming the trade-off between thermal stability and quantity of the reversed austenite is the key to improving the cryogenic impact toughness of SMSS. In this study, the mechanical properties at room temperature and cryogenic impact toughness at −196℃ of 0Cr16Ni5Mo1 SMSS after quenching and tempering (QT) were investigated, along with quenching, intercritical annealing, and tempering (QIT) processes. Reverse transformation behavior during the heat treatment was studied using a thermal dilatometer, and the microstructure evolution was characterized by XRD, EBSD, and TEM. Additionally, the effect of reversed austenite on cryogenic impact toughness was extensively analyzed. The results showed that full martensite was obtained in 0Cr16Ni5Mo1 SMSS after quenching at 1100℃. The volume fraction of reversed austenite in the QT samples tempered at 620℃ was found to be 16.4%, which decreased to 5.0% after cryogenic treatment with liquid nitrogen, and the cryogenic impact toughness of the QT samples was obtained to be only 36.4 J/cm2. The microstructure of samples after intercritical annealing at 680℃ mainly consisted of Ni-poor tempered martensite and Ni-rich fresh martensite. Furthermore, the volume fraction of reversed austenite in the QIT samples increased to 23.8% during the subsequent tempering process at 620℃ while the plasticity increased by 6% and the strength decreased by 7% at room temperature. The average Ni content of reversed austenite in the QIT samples reached 13% (mass fraction), which considerably improved the thermal stability of reversed austenite. Moreover, ~18.3% (volume fraction) reversed austenite remained stable in QIT samples at −196℃, thereby substantially improving the cryogenic impact toughness to 115.4 J/cm2 by absorbing the impact energy through transformation into martensite. The impact fracture of the QIT samples was dominated by dimples, but there remained a little quasicleavage morphology indicating a mixed fracture mode.
Key wordssuper martensitic stainless steel    cryogenic impact toughness    reversed austenite    intercritical annealing
收稿日期: 2023-03-13     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金;国家科技重大专项

引用本文:

宋逸思 廖瑜 李传维 陈益华 顾剑锋. 逆转变奥氏体对0Cr16Ni5Mo1超级马氏体不锈钢低温冲击韧性的影响[J]. 金属学报, 10.11900/0412.1961.2023.00100.

链接本文:

https://www.ams.org.cn/CN/Y0/V/I/0

[1] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[2] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[3] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[4] 王猛, 刘振宇, 李成刚. 轧后超快冷及亚温淬火对5%Ni钢微观组织与低温韧性的影响机理[J]. 金属学报, 2017, 53(8): 947-956.
[5] 董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.
[6] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[7] 王长军,梁剑雄,刘振宝,杨志勇,孙新军,雍岐龙. 亚稳奥氏体对低温海工用钢力学性能的影响与机理*[J]. 金属学报, 2016, 52(4): 385-393.
[8] 谢振家,尚成嘉,周文浩,吴彬彬. 低合金多相钢中残余奥氏体对塑性和韧性的影响*[J]. 金属学报, 2016, 52(2): 224-232.
[9] 邓洁,马佳伟,许以阳,沈耀. 马氏体的分布对双相钢微观变形行为和力学性能的影响[J]. 金属学报, 2015, 51(9): 1092-1100.
[10] 李坤,单际国,王春旭,田志凌. T250马氏体时效钢激光焊接-时效处理接头的强韧性*[J]. 金属学报, 2015, 51(8): 904-912.
[11] 高古辉, 桂晓露, 安佰锋, 谭谆礼, 白秉哲, 翁宇庆. 终冷温度对Mn系超低碳HSLA钢组织及低温韧性的影响[J]. 金属学报, 2015, 51(1): 21-30.
[12] 刘东升 程丙贵 罗咪. F460高强韧厚船板焊接热影响区的组织和冲击断裂行为[J]. 金属学报, 2011, 47(10): 1233-1240.
[13] 杨银辉 柴锋 严彪 苏航 杨才福. Ti处理改善船体钢焊接粗晶区的低温韧性研究[J]. 金属学报, 2010, 46(1): 62-70.
[14] 杨跃辉 蔡庆伍 武会宾 王华. 两相区热处理过程中回转奥氏体的形成规律及其对9Ni钢低温韧性的影响[J]. 金属学报, 2009, 45(3): 270-274.
[15] 周倩青 翟玉春. 高强高韧FV520B马氏体钢的时效工艺优化[J]. 金属学报, 2009, 45(10): 1249-1254.