|
|
逆转变奥氏体对0Cr16Ni5Mo1超级马氏体不锈钢低温冲击韧性的影响 |
宋逸思1,2, 廖瑜1, 李传维1,2( ), 陈益华1, 顾剑锋1,2( ) |
1 上海交通大学 材料科学与工程学院 材料改性与数值模拟研究所 上海 200240 2 上海交通大学 材料科学与工程学院 上海市激光制造与材料改性重点实验室 上海 200240 |
|
Effects of Reversed Austenite on the Cryogenic Impact Toughness of 0Cr16Ni5Mo1 Super Martensitic Stainless Steel |
SONG Yisi1,2, LIAO Yu1, LI Chuanwei1,2( ), CHEN Yihua1, GU Jianfeng1,2( ) |
1 Institute of Materials Modification and Modelling, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2 Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
宋逸思, 廖瑜, 李传维, 陈益华, 顾剑锋. 逆转变奥氏体对0Cr16Ni5Mo1超级马氏体不锈钢低温冲击韧性的影响[J]. 金属学报, 2025, 61(5): 687-698.
Yisi SONG,
Yu LIAO,
Chuanwei LI,
Yihua CHEN,
Jianfeng GU.
Effects of Reversed Austenite on the Cryogenic Impact Toughness of 0Cr16Ni5Mo1 Super Martensitic Stainless Steel[J]. Acta Metall Sin, 2025, 61(5): 687-698.
1 |
Lei X W, Feng Y R, Zhang J X, et al. Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel [J]. Electrochim. Acta, 2016, 191: 640
|
2 |
Anselmo N, May J E, Mariano N A, et al. Corrosion behavior of supermartensitic stainless steel in aerated and CO2-saturated synthetic seawater [J]. Mater. Sci. Eng., 2006, A428: 73
|
3 |
Mesquita T J, Chauveau E, Mantel M, et al. Corrosion and metallurgical investigation of two supermartensitic stainless steels for oil and gas environments [J]. Corros. Sci., 2014, 81: 152
|
4 |
Bilmes P D, Solari M, Llorente C L. Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals [J]. Mater. Charact., 2001, 46: 285
|
5 |
Zou D N, Han Y, Yan D N, et al. Hot workability of 00Cr13Ni5Mo2 supermartensitic stainless steel [J]. Mater. Des., 2011, 32: 4443
|
6 |
Della Rovere C A, Ribeiro C R, Silva R, et al. Microstructural and mechanical characterization of radial friction welded supermartensitic stainless steel joints [J]. Mater. Sci. Eng., 2013, A586: 86
|
7 |
Woollin P, Kostrivas A. Use of supermartensitic stainless steel pipe for offshore flowline applications [A]. 25th International Conference on Offshore Mechanics and Arctic Engineering [C]. Hamburg: ASME, 2006: 565
|
8 |
Liu Z B, Liang J X, Su J, et al. Research and application progress in ultra-high strength stainless steel [J]. Acta Metall. Sin., 2020, 56: 549
|
8 |
刘振宝, 梁剑雄, 苏 杰 等. 高强度不锈钢的研究及发展现状 [J]. 金属学报, 2020, 56: 549
doi: 10.11900/0412.1961.2019.00453
|
9 |
Ye D, Li J, Jiang W, et al. Effect of Cu addition on microstructure and mechanical properties of 15%Cr super martensitic stainless steel [J]. Mater. Des., 2012, 41: 16
|
10 |
Song Y Y, Ping D H, Yin F X, et al. Microstructural evolution and low temperature impact toughness of a Fe-13%Cr-4%Ni-Mo martensitic stainless steel [J]. Mater. Sci. Eng., 2010, A527: 614
|
11 |
Song Y Y, Li X Y, Rong L J, et al. The influence of tempering temperature on the reversed austenite formation and tensile properties in Fe-13%Cr-4%Ni-Mo low carbon martensite stainless steels [J]. Mater. Sci. Eng., 2011, A528: 4075
|
12 |
Ma X P, Wang L J, Liu C M, et al. Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel [J]. Mater. Sci. Eng., 2012, A539: 271
|
13 |
Tabatabae B A, Ashrafizadeh F, Hassanli A M. Influence of retained austenite on the mechanical properties of low carbon martensitic stainless steel castings [J]. ISIJ Int., 2011, 51: 471
|
14 |
Yang D. Effect of tempering process on low temperature impact toughness of 13Cr4NiMo Low carbon martensitic stainless steel [D]. Nanning: Guangxi University, 2020
|
14 |
杨 东. 回火工艺对13Cr4NiMo低碳马氏体不锈钢低温冲击韧性的影响 [D]. 南宁: 广西大学, 2020
|
15 |
Song Y Y. Formation mechanism of the reversed austenite in 0Cr13Ni4Mo stainless steel [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011
|
15 |
宋元元. 0Cr13Ni4Mo不锈钢中逆变奥氏体的相变机制 [D]. 沈阳: 中国科学院金属研究所, 2011
|
16 |
Wen Z M. Study on composition, microstructure and properties of high strength martensitic stainless steel used in low-temperature environment [D]. Kunming: Kunming University of Science and Technology, 2011
|
16 |
文志旻. 低温用高强度马氏体不锈钢成分、组织及性能的研究 [D]. 昆明: 昆明理工大学, 2011
|
17 |
Qiu X Y F, Yang Z Y, Ding Y L. Solid solution treatment for improving cryogenic temperature toughness of Cr-Ni-Mo-Ti maraging stainless steel [J]. Heat Treat. Met., 2022, 47(1): 44
|
17 |
邱旭扬帆, 杨卓越, 丁雅莉. 提高Cr-Ni-Mo-Ti马氏体时效不锈钢超低温韧性的固溶处理工艺 [J]. 金属热处理, 2022, 47(1): 44
doi: 10.13251/j.issn.0254-6051.2022.01.008
|
18 |
Ji Y R, Yang Z Y, Tan H L, et al. Heat treatment process for improving cryogenic toughness of Cr-Ni-Co-Mo maraging stainless steel [J]. Heat Treat. Met., 2021, 46(10): 133
doi: 10.13251/j.issn.0254-6051.2021.10.023
|
18 |
吉昱睿, 杨卓越, 谭红琳 等. 提高Cr-Ni-Co-Mo马氏体时效不锈钢超低温韧性的热处理工艺 [J]. 金属热处理, 2021, 46(10): 133
doi: 10.13251/j.issn.0254-6051.2021.10.023
|
19 |
Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta Mater., 2011, 59: 4002
|
20 |
Shi J, Sun X J, Wang M Q, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite [J]. Scr. Mater., 2010, 63: 815
|
21 |
Han G, Shang C J, Xie Z J, et al. On the thermal and mechanical stability of reverted austenite by intercritical tempering [J]. Mater. Lett., 2021, 291: 129457
|
22 |
Wang C J, Liang J X, Liu Z B, et al. Effect of metastable austenite on mechanical property and mechanism in cryogenic steel applied in oceaneering [J]. Acta Metall. Sin., 2016, 52: 385
|
22 |
王长军, 梁剑雄, 刘振宝 等. 亚稳奥氏体对低温海工用钢力学性能的影响与机理 [J]. 金属学报, 2016, 52: 385
doi: 10.11900/0412.1961.2015.00312
|
23 |
Hou W, Liu Q D, Gu J F. Nano-sized austenite and Cu precipitates formed by using intercritical tempering plus tempering and their effect on the mechanical property in a low carbon Cu bearing 7Ni steel [J]. Mater. Sci. Eng., 2020, A780: 139186
|
24 |
Song Y Y, Li X Y, Rong L J, et al. Formation of the reversed austenite during intercritical tempering in a Fe-13%Cr-4%Ni-Mo martensitic stainless steel [J]. Mater. Lett., 2010, 64: 1411
|
25 |
Hu J, Du L X, Wang J J, et al. Structure-mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling [J]. Mater. Sci. Eng., 2013, A585: 197
|
26 |
Zhang S H, Wang P, Li D Z, et al. Investigation of the evolution of retained austenite in Fe-13%Cr-4%Ni martensitic stainless steel during intercritical tempering [J]. Mater. Des., 2015, 84: 385
|
27 |
Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321
|
28 |
Matsuoka Y, Iwasaki T, Nakada N, et al. Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel [J]. ISIJ Int., 2013, 53: 1224
|
29 |
Kang J, Wang C, Wang G D. Microstructural characteristics and impact fracture behavior of a high-strength low-alloy steel treated by intercritical heat treatment [J]. Mater. Sci. Eng., 2012, A553: 96
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|