|
|
1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制 |
杨瑞泽1,2,3, 翟汝宗1,2, 任少飞1,2, 孙明月1,2(), 徐斌1,2, 乔岩欣3(), 杨兰兰3 |
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 2 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 3 江苏科技大学 材料科学与工程学院 镇江 212003 |
|
Evolution and Healing Mechanism of 1Cr22Mn16N High Nitrogen Austenitic Stainless Steel Interface Microstructure During Plastic Deformation Bonding |
YANG Ruize1,2,3, ZHAI Ruzong1,2, REN Shaofei1,2, SUN Mingyue1,2(), XU Bin1,2, QIAO Yanxin3(), YANG Lanlan3 |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China |
引用本文:
杨瑞泽, 翟汝宗, 任少飞, 孙明月, 徐斌, 乔岩欣, 杨兰兰. 1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2024, 60(7): 915-925.
Ruize YANG,
Ruzong ZHAI,
Shaofei REN,
Mingyue SUN,
Bin XU,
Yanxin QIAO,
Lanlan YANG.
Evolution and Healing Mechanism of 1Cr22Mn16N High Nitrogen Austenitic Stainless Steel Interface Microstructure During Plastic Deformation Bonding[J]. Acta Metall Sin, 2024, 60(7): 915-925.
1 |
Zhang X Y, Zhou Q, Wang K H., et al. Study on microstructure and tensile properties of high nitrogen Cr-Mn steel processed by CMT wire and arc additive manufacturing [J]. Mater. Des., 2019, 166: 107611
|
2 |
Gavriljuk V G, Berns H. High Nitrogen Steels [M]. Berlin: Springer, 1999: 135
|
3 |
Lang Y P, Zhou Y, Rong F, et al. Hot working of high nitrogen austenitic stainless steel [J]. J. Iron Steel Res. Int., 2010, 17: 45
|
4 |
Bott A H, Pickering F B, Butterworth G J. Development of high manganese high nitrogen low activation austenitic stainless steels [J]. J. Nucl. Mater., 1986, 141-143: 1088
|
5 |
Simmons J W. Overview: High-nitrogen alloying of stainless steels [J]. Mater. Sci. Eng., 1996, A207: 159
|
6 |
Harzenmoser M. Welding of high nitrogen steels [J]. Mater. Manuf. Processes, 2004, 19: 75
|
7 |
Du Toit M, Pistorius P C. Nitrogen control during autogenous arc welding of stainless steel—Part 1: Experimental observations [J]. Trans. Weld. J.., 2003, 82:219
|
8 |
Mohammed R, Reddy G M, Rao K S. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties [J]. Def. Technol., 2017, 13: 59
doi: 10.1016/j.dt.2016.06.003
|
9 |
Zhao L, Tian Z L, Peng Y, et al. Laser welding of high nitrogen steel 1Cr22Mn16N Ⅲ. Microstructure and mechanical properties of welding heat-affected zone [J]. Trans. China Weld. Inst., 2007, 28(12): 26
|
9 |
赵 琳, 田志凌, 彭 云 等. 1Cr22Mn16N高氮钢的激光焊接Ⅲ.焊接热影响区组织和性能 [J]. 焊接学报, 2007, 28(12): 26
|
10 |
Kamiya O, Chen Z W, Kikuchi Y. Microporosity formation in partially melted zone during welding of high nitrogen austenitic stainless steels [J]. J. Mater. Sci., 2002, 37: 2475
|
11 |
Qiang W, Wang K H. Shielding gas effects on double-sided synchronous autogenous GTA weldability of high nitrogen austenitic stainless steel [J]. J. Mater. Process. Technol., 2017, 250: 169
|
12 |
Zhang H, Wan D, Xue P, et al. Research advances on homogenization manufacturing of heavy components by metal additive forging [J]. J. Mater. Sci. Technol., 2018, 34: 2183e8
doi: 10.1016/j.jmst.2018.03.014
|
13 |
Sun M Y, Xu B, Xie B J, et al. Research progress of homogenized construction and forming of heavy forgings [J]. Chin. Sci. Bull., 2020, 65: 3043
|
13 |
孙明月, 徐 斌, 谢碧君 等. 大锻件均质化构筑成形研究进展 [J]. 科学通报, 2020, 65: 3043
|
14 |
Zhang J Y, Xu B, Tariq N H, et al. Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding [J]. J. Mater. Sci. Technol., 2020, 46: 1
doi: 10.1016/j.jmst.2019.11.015
|
15 |
Zhou L Y, Feng S B, Sun M Y, et al. Interfacial microstructure evolution and bonding mechanisms of 14YWT alloys produced by hot compression bonding [J]. J. Mater. Sci. Technol., 2019, 35: 1671
doi: 10.1016/j.jmst.2019.04.005
|
16 |
Xie B J, Sun M Y, Xu B, et al. Dissolution and evolution of interfacial oxides improving the mechanical properties of solid state bonding joints [J]. Mater. Des., 2018, 157: 437
|
17 |
Xie B J, Sun M Y, Xu B, et al. Oxidation of stainless steel in vacuum and evolution of surface oxide scales during hot-compression bonding [J]. Corros. Sci., 2019, 147: 41
|
18 |
Zhang J Y, Sun M Y, Xu B, et al. Evolution of the interfacial microstructure during the plastic deformation bonding of copper [J]. Mater. Sci. Eng., 2019, A746 : 1
|
19 |
Jiang H Y, Sun M Y, Wu M F, et al. Microstructure and properties of 7075 aluminum alloy hot compress bonding joint [J]. Heat Treat. Met., 2020, 45(2): 46
|
19 |
江海洋, 孙明月, 吴铭方 等. 7075铝合金热变形连接接头的组织与性能 [J]. 金属热处理, 2020, 45(2): 46
doi: 10.13251/j.issn.0254-6051.2020.02.009
|
20 |
Ren S F, Zhang J Y, Zhang X F, et al. Evolution of interfacial microstructure of Ni-Co base superalloy during plastic deformation bonding and its bonding mechanism [J]. Acta Metall. Sin., 2022, 58: 129
doi: 10.11900/0412.1961.2020.00493
|
20 |
任少飞, 张健杨, 张新房 等. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制 [J]. 金属学报, 2022, 58: 129
doi: 10.11900/0412.1961.2020.00493
|
21 |
Miura H, Ozama M, Mogawa R, et al. Strain-rate effect on dynamic recrystallization at grain boundary in Cu alloy bicrystal [J]. Scr. Mater., 2003, 48: 1501
|
22 |
Wang Y, Shao W Z, Zhen L, et al. Flow behavior and microstructures of superalloy 718 during high temperature deformation[J]. Mater. Sci. Eng., 2008, A497: 479
|
23 |
Mandal S, Jayalakshmi M, Bhaduri A K, et al. Effect of strain rate on the dynamic recrystallization behavior in a nitrogen-enhanced 316L(N) [J]. Metall. Mater. Trans., 2014, 45A: 5645
|
24 |
Wang X Y, Wang D K, Jin J S, et al. Effects of strain rates and twins evolution on dynamic recrystallization mechanisms of austenite stainless steel [J]. Mater. Sci. Eng., 2019, A761: 138044
|
25 |
Humphrey F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. 2nd Ed., Amsterdam: Elsevier, 2004: 427
|
26 |
Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions [J]. Prog. Mater. Sci., 2014, 60: 130
|
27 |
Sakai T, Jonas J J. Overview no.35 Dynamic recrystallization: Mechanical and microstructural considerations [J]. Acta Metall., 1984, 32: 189
|
28 |
Jonas J J, Sellars C M, Tegart W J M. Strength and structure under hot-working conditions [J]. Metall. Rev., 1969, 14: 1
|
29 |
Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: A review [J]. Mater. Sci. Eng., 1997, A238: 219
|
30 |
Huang K, Logé R E. A review of dynamic recrystallization phenomena in metallic materials [J]. Mater. Des., 2016, 111: 548
|
31 |
Hu G D, Wang P, Li D Z, et al. Effects of nitrogen on precipitation and tensile behaviors of 25Cr 20Ni austenitic stainless steels at elevated temperatures [J]. Mater. Sci. Eng., 2019, A752: 93
|
32 |
Zhong X T, Wang L, Liu F. Study on formation mechanism of necklace structure in discontinuous dynamic recrystallization of Incoloy 028 [J]. Acta Metall. Sin., 2018, 54: 969
doi: 10.11900/0412.1961.2017.00461
|
32 |
钟茜婷, 王 磊, 刘 峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究 [J]. 金属学报, 2018, 54: 969
doi: 10.11900/0412.1961.2017.00461
|
33 |
Souza R C, Silva E S, Jorge A M, et al. Dynamic recovery and dynamic recrystallization competition on a Nb- and N-bearing austenitic stainless steel biomaterial: Influence of strain rate and temperature [J]. Mater. Sci. Eng., 2013, A582: 96
|
34 |
Sakai T. Dynamic recrystallization microstructures under hot working conditions [J]. J. Mater. Process. Technol., 1995, 53: 349
|
35 |
Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 5
|
35 |
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 第 3版, 上海: 上海交通大学出版社, 2010: 5
|
36 |
Paggi A, Angella G, Donnini R. Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization [J]. Mater. Charact, 2015, 107: 174
|
37 |
Dudova N, Belyakov A, Sakai T, et al. Dynamic recrystallization mechanisms operating in a Ni-20%Cr alloy under hot-to-warm working [J]. Acta Mater., 2010, 58: 3624
|
38 |
Xie B C, Yu H, Sheng T, et al. DDRX and CDRX of an as-cast nickel-based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. J. Alloys Compd., 2019, 803: 16
|
39 |
Kubota M, Ushioda K, Miyamoto G, et al. Analysis of recrystallization behavior of hot-deformed austenite reconstructed from electron backscattering diffraction orientation maps of lath martensite [J]. Scr. Mater., 2016, 112: 92
|
40 |
Kim J M, Kim S J, Kang J H. Effects of short-range ordering and stacking fault energy on tensile behavior of nitrogen-containing austenitic stainless steels [J]. Mater. Sci. Eng., 2022, A836: 142730
|
41 |
Kumar S, Samantaray D, Aashranth B, et al. Dependency of rate sensitive DRX behaviour on interstitial content of a Fe-Cr-Ni-Mo alloy [J]. Mater. Sci. Eng., 2019, A743: 148
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|