Please wait a minute...
金属学报  2024, Vol. 60 Issue (7): 915-925    DOI: 10.11900/0412.1961.2023.00015
  研究论文 本期目录 | 过刊浏览 |
1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制
杨瑞泽1,2,3, 翟汝宗1,2, 任少飞1,2, 孙明月1,2(), 徐斌1,2, 乔岩欣3(), 杨兰兰3
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
3 江苏科技大学 材料科学与工程学院 镇江 212003
Evolution and Healing Mechanism of 1Cr22Mn16N High Nitrogen Austenitic Stainless Steel Interface Microstructure During Plastic Deformation Bonding
YANG Ruize1,2,3, ZHAI Ruzong1,2, REN Shaofei1,2, SUN Mingyue1,2(), XU Bin1,2, QIAO Yanxin3(), YANG Lanlan3
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
引用本文:

杨瑞泽, 翟汝宗, 任少飞, 孙明月, 徐斌, 乔岩欣, 杨兰兰. 1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2024, 60(7): 915-925.
Ruize YANG, Ruzong ZHAI, Shaofei REN, Mingyue SUN, Bin XU, Yanxin QIAO, Lanlan YANG. Evolution and Healing Mechanism of 1Cr22Mn16N High Nitrogen Austenitic Stainless Steel Interface Microstructure During Plastic Deformation Bonding[J]. Acta Metall Sin, 2024, 60(7): 915-925.

全文: PDF(4134 KB)   HTML
摘要: 

为解决高氮奥氏体不锈钢焊接难题,以高氮奥氏体不锈钢1Cr22Mn16N为实验材料,采用塑性变形连接技术实现了1Cr22Mn16N的连接。通过OM、EBSD和TEM等手段研究了不同变形参数下的连接界面组织演化,讨论了界面愈合机理,并采用拉伸实验评估了连接接头的结合强度。研究结果表明,随着变形量的增加和变形温度的升高,连接界面的结合程度显著提高。当变形温度达到1200℃,变形量为40%时,连接界面结合较好,其拉伸性能达到基体同等水平。在塑性变形连接过程中,由于热力耦合促使原始粗大的晶粒细化,在连接界面处发生不连续动态再结晶,随后再结晶晶粒核心通过消耗变形晶粒中的应变储能发生长大,诱导连接界面弯曲,晶界迁移;与此同时,位错在应力的作用下堆积和缠结,在界面附近的变形晶粒内形成了大量亚晶界,随着应力的增大发生了连续动态再结晶,使亚晶界转变成大角度晶界,促进了连接界面愈合。高氮奥氏体不锈钢1Cr22Mn16N塑性变形连接过程中,在连续动态再结晶与不连续动态再结晶的协同作用下实现了界面的连接。

关键词 高氮奥氏体不锈钢塑性变形连接动态再结晶    
Abstract

High nitrogen austenitic stainless steels (HNASSs) are widely used for their good wear resistance and high strength, plasticity, and corrosion resistance. Among these steels, 1Cr22Mn16N HNASS improves the cost effectiveness because of the incorporation of a N element in place of the expensive Ni element. In addition, the overall mechanical properties of the steel are further improved because of the solid solution-strengthening effect of the N element. However, the traditional welding methods such as arc welding, tungsten gas shielded welding, and friction stir welding are not suitable for 1Cr22Mn16N HNASS welding because of the different solubility of N in the liquid and solid phases. N easily spills out during the welding process, which considerably degrades the mechanical properties of the welded joints. Therefore, a new welding method needs to be explored to solve the problems in 1Cr22Mn16N welding. In this work, the bonding technology of plastic deformation was introduced to solve the poor performance problems of 1Cr22Mn16N HNASS welded joints. The experiments were conducted through the Glebble 3500 thermomechanical simulation in the temperature range of 1050-1250oC and a strain range of 10%-40% with a strain rate of 0.1 s-1. The microstructure evolution of the bonding interface was characterized and investigated using OM, EBSD, and TEM; the interface healing mechanism was discussed, and the bonding strength of the joint was evaluated by tensile test. The results show that the bonding level of the interface substantially increases with the increase in deformation and temperature. When the deformation temperature reached 1200oC and the strain reached 40%, the mechanical properties of the bonding interface reached up to the same level as the matrix. During the process of deformation, discontinuous dynamic recrystallization (DDRX) occurred at the interface because of thermomechanical coupling; meanwhile, dislocations accumulated and entanglement occurred under the action of stress, forming a large number of subgrain boundaries within the original grain boundaries near the interface, which, lead to continuous dynamic recrystallization (CDRX). The healing of the interface was achieved by the synergistic effect of CDRX and DDRX.

Key wordshigh-nitrogen austenitic stainless steel    plastic deformation bonding    dynamic recrystallization
收稿日期: 2023-01-09     
ZTFLH:  TG406  
基金资助:国家重点研发计划项目(2018YFA0702900);国家自然科学基金项目(52173305);国家自然科学基金项目(52101061);国家自然科学基金项目(52233017);国家自然科学基金项目(52203384)
通讯作者: 孙明月,mysun@imr.ac.cn,主要从事特殊钢与大锻件材料及先进控形控性技术研究;
乔岩欣,yxqiao@just.edu.cn,主要从事金属腐蚀与防护研究
Corresponding author: SUN Mingyue, professor, Tel: (024)83971018, E-mail: mysun@imr.ac.cn;
作者简介: 杨瑞泽,男,1997年生,硕士
图1  实验方法及样品尺寸示意图
图2  1Cr22Mn16N高氮奥氏体不锈钢(HNASS)显微组织反极图(IPF)
图3  应变速率为0.1 s-1、变形量为20%、不同变形温度下1Cr22Mn16N HNASS界面处的OM像(a) 1050oC (b) 1100oC (c) 1150oC (d) 1200oC (e) 1250oC
图4  1200℃时不同变形量的1Cr22Mn16N HNASS界面处的OM像和平均晶粒尺寸图
图5  20%和40%变形连接接头与母材的室温拉伸曲线
图6  20%和40%变形连接接头与母材的断口形貌
图7  塑性变形温度1200℃时,不同变形量下界面组织的IPF、局部取向差(GND)图及对应的晶粒取向(GOS)图
图8  不同变形量样品的大小角度晶界占比图
图9  变形温度为1200℃、变形量20%下界面微观组织的TEM像
图10  塑性变形连接界面愈合机理示意图
1 Zhang X Y, Zhou Q, Wang K H., et al. Study on microstructure and tensile properties of high nitrogen Cr-Mn steel processed by CMT wire and arc additive manufacturing [J]. Mater. Des., 2019, 166: 107611
2 Gavriljuk V G, Berns H. High Nitrogen Steels [M]. Berlin: Springer, 1999: 135
3 Lang Y P, Zhou Y, Rong F, et al. Hot working of high nitrogen austenitic stainless steel [J]. J. Iron Steel Res. Int., 2010, 17: 45
4 Bott A H, Pickering F B, Butterworth G J. Development of high manganese high nitrogen low activation austenitic stainless steels [J]. J. Nucl. Mater., 1986, 141-143: 1088
5 Simmons J W. Overview: High-nitrogen alloying of stainless steels [J]. Mater. Sci. Eng., 1996, A207: 159
6 Harzenmoser M. Welding of high nitrogen steels [J]. Mater. Manuf. Processes, 2004, 19: 75
7 Du Toit M, Pistorius P C. Nitrogen control during autogenous arc welding of stainless steel—Part 1: Experimental observations [J]. Trans. Weld. J.., 2003, 82:219
8 Mohammed R, Reddy G M, Rao K S. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties [J]. Def. Technol., 2017, 13: 59
doi: 10.1016/j.dt.2016.06.003
9 Zhao L, Tian Z L, Peng Y, et al. Laser welding of high nitrogen steel 1Cr22Mn16N Ⅲ. Microstructure and mechanical properties of welding heat-affected zone [J]. Trans. China Weld. Inst., 2007, 28(12): 26
9 赵 琳, 田志凌, 彭 云 等. 1Cr22Mn16N高氮钢的激光焊接Ⅲ.焊接热影响区组织和性能 [J]. 焊接学报, 2007, 28(12): 26
10 Kamiya O, Chen Z W, Kikuchi Y. Microporosity formation in partially melted zone during welding of high nitrogen austenitic stainless steels [J]. J. Mater. Sci., 2002, 37: 2475
11 Qiang W, Wang K H. Shielding gas effects on double-sided synchronous autogenous GTA weldability of high nitrogen austenitic stainless steel [J]. J. Mater. Process. Technol., 2017, 250: 169
12 Zhang H, Wan D, Xue P, et al. Research advances on homogenization manufacturing of heavy components by metal additive forging [J]. J. Mater. Sci. Technol., 2018, 34: 2183e8
doi: 10.1016/j.jmst.2018.03.014
13 Sun M Y, Xu B, Xie B J, et al. Research progress of homogenized construction and forming of heavy forgings [J]. Chin. Sci. Bull., 2020, 65: 3043
13 孙明月, 徐 斌, 谢碧君 等. 大锻件均质化构筑成形研究进展 [J]. 科学通报, 2020, 65: 3043
14 Zhang J Y, Xu B, Tariq N H, et al. Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding [J]. J. Mater. Sci. Technol., 2020, 46: 1
doi: 10.1016/j.jmst.2019.11.015
15 Zhou L Y, Feng S B, Sun M Y, et al. Interfacial microstructure evolution and bonding mechanisms of 14YWT alloys produced by hot compression bonding [J]. J. Mater. Sci. Technol., 2019, 35: 1671
doi: 10.1016/j.jmst.2019.04.005
16 Xie B J, Sun M Y, Xu B, et al. Dissolution and evolution of interfacial oxides improving the mechanical properties of solid state bonding joints [J]. Mater. Des., 2018, 157: 437
17 Xie B J, Sun M Y, Xu B, et al. Oxidation of stainless steel in vacuum and evolution of surface oxide scales during hot-compression bonding [J]. Corros. Sci., 2019, 147: 41
18 Zhang J Y, Sun M Y, Xu B, et al. Evolution of the interfacial microstructure during the plastic deformation bonding of copper [J]. Mater. Sci. Eng., 2019, A746 : 1
19 Jiang H Y, Sun M Y, Wu M F, et al. Microstructure and properties of 7075 aluminum alloy hot compress bonding joint [J]. Heat Treat. Met., 2020, 45(2): 46
19 江海洋, 孙明月, 吴铭方 等. 7075铝合金热变形连接接头的组织与性能 [J]. 金属热处理, 2020, 45(2): 46
doi: 10.13251/j.issn.0254-6051.2020.02.009
20 Ren S F, Zhang J Y, Zhang X F, et al. Evolution of interfacial microstructure of Ni-Co base superalloy during plastic deformation bonding and its bonding mechanism [J]. Acta Metall. Sin., 2022, 58: 129
doi: 10.11900/0412.1961.2020.00493
20 任少飞, 张健杨, 张新房 等. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制 [J]. 金属学报, 2022, 58: 129
doi: 10.11900/0412.1961.2020.00493
21 Miura H, Ozama M, Mogawa R, et al. Strain-rate effect on dynamic recrystallization at grain boundary in Cu alloy bicrystal [J]. Scr. Mater., 2003, 48: 1501
22 Wang Y, Shao W Z, Zhen L, et al. Flow behavior and microstructures of superalloy 718 during high temperature deformation[J]. Mater. Sci. Eng., 2008, A497: 479
23 Mandal S, Jayalakshmi M, Bhaduri A K, et al. Effect of strain rate on the dynamic recrystallization behavior in a nitrogen-enhanced 316L(N) [J]. Metall. Mater. Trans., 2014, 45A: 5645
24 Wang X Y, Wang D K, Jin J S, et al. Effects of strain rates and twins evolution on dynamic recrystallization mechanisms of austenite stainless steel [J]. Mater. Sci. Eng., 2019, A761: 138044
25 Humphrey F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. 2nd Ed., Amsterdam: Elsevier, 2004: 427
26 Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions [J]. Prog. Mater. Sci., 2014, 60: 130
27 Sakai T, Jonas J J. Overview no.35 Dynamic recrystallization: Mechanical and microstructural considerations [J]. Acta Metall., 1984, 32: 189
28 Jonas J J, Sellars C M, Tegart W J M. Strength and structure under hot-working conditions [J]. Metall. Rev., 1969, 14: 1
29 Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: A review [J]. Mater. Sci. Eng., 1997, A238: 219
30 Huang K, Logé R E. A review of dynamic recrystallization phenomena in metallic materials [J]. Mater. Des., 2016, 111: 548
31 Hu G D, Wang P, Li D Z, et al. Effects of nitrogen on precipitation and tensile behaviors of 25Cr 20Ni austenitic stainless steels at elevated temperatures [J]. Mater. Sci. Eng., 2019, A752: 93
32 Zhong X T, Wang L, Liu F. Study on formation mechanism of necklace structure in discontinuous dynamic recrystallization of Incoloy 028 [J]. Acta Metall. Sin., 2018, 54: 969
doi: 10.11900/0412.1961.2017.00461
32 钟茜婷, 王 磊, 刘 峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究 [J]. 金属学报, 2018, 54: 969
doi: 10.11900/0412.1961.2017.00461
33 Souza R C, Silva E S, Jorge A M, et al. Dynamic recovery and dynamic recrystallization competition on a Nb- and N-bearing austenitic stainless steel biomaterial: Influence of strain rate and temperature [J]. Mater. Sci. Eng., 2013, A582: 96
34 Sakai T. Dynamic recrystallization microstructures under hot working conditions [J]. J. Mater. Process. Technol., 1995, 53: 349
35 Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 5
35 胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 第 3版, 上海: 上海交通大学出版社, 2010: 5
36 Paggi A, Angella G, Donnini R. Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization [J]. Mater. Charact, 2015, 107: 174
37 Dudova N, Belyakov A, Sakai T, et al. Dynamic recrystallization mechanisms operating in a Ni-20%Cr alloy under hot-to-warm working [J]. Acta Mater., 2010, 58: 3624
38 Xie B C, Yu H, Sheng T, et al. DDRX and CDRX of an as-cast nickel-based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. J. Alloys Compd., 2019, 803: 16
39 Kubota M, Ushioda K, Miyamoto G, et al. Analysis of recrystallization behavior of hot-deformed austenite reconstructed from electron backscattering diffraction orientation maps of lath martensite [J]. Scr. Mater., 2016, 112: 92
40 Kim J M, Kim S J, Kang J H. Effects of short-range ordering and stacking fault energy on tensile behavior of nitrogen-containing austenitic stainless steels [J]. Mater. Sci. Eng., 2022, A836: 142730
41 Kumar S, Samantaray D, Aashranth B, et al. Dependency of rate sensitive DRX behaviour on interstitial content of a Fe-Cr-Ni-Mo alloy [J]. Mater. Sci. Eng., 2019, A743: 148
[1] 陈胜虎, 王琪玉, 姜海昌, 戎利建. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响[J]. 金属学报, 2024, 60(3): 367-376.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[4] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[6] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[7] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[8] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[9] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[10] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[11] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[12] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[13] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[14] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[15] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.