|
|
层错能对面心立方金属形变机制与力学性能的影响 |
张哲峰( ), 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏 |
中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals |
ZHANG Zhefeng( ), LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng |
Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
Zhefeng ZHANG,
Keqiang LI,
Tuo CAI,
Peng LI,
Zhenjun ZHANG,
Rui LIU,
Jinbo YANG,
Peng ZHANG.
Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. Acta Metall Sin, 2023, 59(4): 467-477.
1 |
Pan J S, Tong J M, Tian M B. Fundamentals of Materials Science [M]. Beijing: Tsinghua University Press, 2011: 1
|
1 |
潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 2011: 1
|
2 |
Anderson P M, Hirth J P, Lothe J. Theory of Dislocations [M]. 3rd Ed., Cambridge: Cambridge University Press, 2017: 1
|
3 |
Wang Z R. Cyclic deformation response of planar-slip materials and a new criterion for the wavy-to-planar-slip transition [J]. Philos. Mag., 2004, 84: 351
doi: 10.1080/14786430310001639824
|
4 |
Lukáš P, Klesnil M. Cyclic stress-strain response and fatigue life of metals in low amplitude region [J]. Mater. Sci. Eng., 1973, 11: 345
doi: 10.1016/0025-5416(73)90125-0
|
5 |
Mughrabi H. On the current understanding of strain gradient plasticity [J]. Mater. Sci. Eng., 2004, A387-389: 209
|
6 |
de Campos M F. Selected values for the stacking fault energy of face centered cubic metals [J]. Mater. Sci. Forum, 2008, 591-593: 708
doi: 10.4028/www.scientific.net/MSF.591-593
|
7 |
Dillamore I L, Smallman R E, Roberts W T. A determination of the stacking-fault energy of some pure F.C.C. metals [J]. Philos. Mag., 1964, 9: 517
doi: 10.1080/14786436408222963
|
8 |
Cockayne D J H, Jenkins M L, Ray I L F. The measurement of stacking-fault energies of pure face-centred cubic metals [J]. Philos. Mag., 1971, 24: 1383
doi: 10.1080/14786437108217419
|
9 |
Stobbs W M, Sworn C H. The weak beam technique as applied to the determination of the stacking-fault energy of copper [J]. Philos. Mag., 1971, 24: 1365
doi: 10.1080/14786437108217418
|
10 |
Reed R P, Schramm R E. Relationship between stacking-fault energy and X-ray measurements of stacking-fault probability and microstrain [J]. J. Appl. Phys., 1974, 45: 4705
doi: 10.1063/1.1663122
|
11 |
Murr L E. Interfacial Phenomena in Metals and Alloys [M]. Reading: Addison-Wesley, 1975: 1
|
12 |
Müllner P, Ferreira P J. On the energy of terminated stacking faults [J]. Philos. Mag. Lett., 1996, 73: 289
doi: 10.1080/095008396180551
|
13 |
Pierce D T, Jiménez J A, Bentley J, et al. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe-Mn-(Al-Si) steels investigated by experiment and theory [J]. Acta Mater., 2014, 68: 238
doi: 10.1016/j.actamat.2014.01.001
|
14 |
Curtze S, Kuokkala V T, Oikari A, et al. Thermodynamic modeling of the stacking fault energy of austenitic steels [J]. Acta Mater., 2011, 59: 1068
doi: 10.1016/j.actamat.2010.10.037
|
15 |
Li K Q. Atomistic simulation of the micromechanisms of plastic deformation in face-centered cubic metals [D]. Shenyang: University of Science and Technology of China (Institute of Metal Research, Chinese Academy of Sciences), 2020
|
15 |
李克强. 面心立方金属塑性变形微观机制的原子模拟研究 [D]. 沈阳: 中国科学技术大学(中国科学院金属研究所), 2020
|
16 |
Li K Q, Zhang Z J, Li L L, et al. Effective stacking fault energy in face-centered cubic metals [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 873
doi: 10.1007/s40195-018-0718-4
|
17 |
Gray III G T, Kaschner G C, Mason T A, et al. The influence of interstitial content, temperature, and strain rate on deformation twin formation [A]. Advances in Twinning. Proceedings International Symposium [C]. 1999 TMS Annual Meeting, 1999: 157
|
18 |
Chen M W, Ma E, Hemker K J, et al. Deformation twinning in nanocrystalline aluminum [J]. Science, 2003, 300: 1275
pmid: 12714676
|
19 |
Wu X L, Zhu Y T. Inverse grain-size effect on twinning in nanocrystalline Ni [J]. Phys. Rev. Lett., 2008, 101: 025503
|
20 |
Meyers M A, Vöhringer O, Lubarda V A. The onset of twinning in metals: A constitutive description [J]. Acta Mater., 2001, 49: 4025
doi: 10.1016/S1359-6454(01)00300-7
|
21 |
Rogers H C, Reed-Hill R E, Hirth J P. Deformation Twinning [M]. New York: Gordon and Breach Science Publishers, 1964: 1
|
22 |
Tadmor E B, Bernstein N. A first-principles measure for the twinnability of FCC metals [J]. J. Mech. Phys. Solids, 2004, 52: 2507
doi: 10.1016/j.jmps.2004.05.002
|
23 |
Asaro R J, Suresh S. Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins [J]. Acta Mater., 2005, 53: 3369
doi: 10.1016/j.actamat.2005.03.047
|
24 |
Cai T, Zhang Z J, Zhang P, et al. Competition between slip and twinning in face-centered cubic metals [J]. J. Appl. Phys., 2014, 116: 163512
doi: 10.1063/1.4898319
|
25 |
Cai T. Computation and simulation for deformation mechanisms of face-centered cubic metals and alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2016
|
25 |
蔡 拓. 面心立方金属及合金变形机制计算模拟 [D]. 沈阳: 中国科学院金属研究所, 2016
|
26 |
Wei X M, Zhang J M, Xu K W. Generalized stacking fault energy in FCC metals with MEAM [J]. Appl. Surf. Sci., 2007, 254: 1489
doi: 10.1016/j.apsusc.2007.07.078
|
27 |
Mughrabi H. The cyclic hardening and saturation behaviour of copper single crystals [J]. Mater. Sci. Eng., 1978, 33: 207
doi: 10.1016/0025-5416(78)90174-X
|
28 |
Winter A T. A model for the fatigue of copper at low plastic strain amplitudes [J]. Philos. Mag., 1974, 30: 719
doi: 10.1080/14786437408207230
|
29 |
Li P. Study on the cyclic deformation behavior of face-centered cubic crystals [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2009
|
29 |
李 鹏. 面心立方晶体循环变形行为研究 [D]. 沈阳: 中国科学院金属研究所, 2009
|
30 |
Woods P J. Low-amplitude fatigue of copper and copper-5 at.% aluminium single crystals [J]. Philos. Mag., 1973, 28: 155
|
31 |
Wu X M, Wang Z G, Li G Y. Cyclic deformation and strain burst behavior of Cu-7at.%Al and Cu-16at.%Al single crystals with different orientations [J]. Mater. Sci. Eng., 2001, A314: 39
|
32 |
Zhang Z F, Wang Z G. Grain boundary effects on cyclic deformation and fatigue damage [J]. Prog. Mater. Sci., 2008, 53: 1025
doi: 10.1016/j.pmatsci.2008.06.001
|
33 |
Qu S, Zhang P, Wu S D, et al. Twin boundaries: Strong or weak? [J]. Scr. Mater., 2008, 59: 1131
doi: 10.1016/j.scriptamat.2008.07.037
|
34 |
Zhang P, Zhang Z J, Li L L, et al. Twin boundary: Stronger or weaker interface to resist fatigue cracking [J]. Scr. Mater., 2012, 66: 854
doi: 10.1016/j.scriptamat.2012.01.028
|
35 |
Zhang Z J. Study on the effect of delamination energy on strength-plasticity matching and fatigue behavior of single-phase copper-zinc alloy [D]. Shenyang: University of Chinese Academy of Sciences (Institute of Metal Research, Chinese Academy of Sciences), 2013
|
35 |
张振军. 层错能对单相铜锌合金强度塑性匹配及疲劳行为影响研究 [D]. 沈阳: 中国科学院大学(中国科学院金属研究所), 2013
|
36 |
Zhang Z J, Zhang P, Li L L, et al. Fatigue cracking at twin boundaries: Effects of crystallographic orientation and stacking fault energy [J]. Acta Mater., 2012, 60: 3113
doi: 10.1016/j.actamat.2012.02.016
|
37 |
Liu R. Study on tensile and fatigue properties of copper-aluminum alloy [D]. Shenyang: University of Chinese Academy of Sciences (Institute of Metal Research, Chinese Academy of Sciences), 2018
|
37 |
刘 睿. 铜铝合金拉伸与疲劳性能研究 [D]. 沈阳: 中国科学院大学(中国科学院金属研究所), 2018
|
38 |
An X H, Wu S D, Wang Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems [J]. Prog. Mater. Sci., 2019, 101: 1
doi: 10.1016/j.pmatsci.2018.11.001
|
39 |
Yang H K, Tian Y Z, Zhang Z F. Revealing the mechanical properties and microstructure evolutions of Fe-22Mn-0.6C-(x)Al TWIP steels via Al alloying control [J]. Mater. Sci. Eng., 2018, A731: 61
|
40 |
Sun S J, Tian Y Z, Lin H R, et al. Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure [J]. Mater. Des., 2017, 133: 122
doi: 10.1016/j.matdes.2017.07.054
|
41 |
Zhang Z F, Shao C W, Wang B, et al. Tensile and fatigue properties and deformation mechanisms of twinning-induced plasticity steels [J]. Acta Metall. Sin., 2020, 56: 476
doi: 10.11900/0412.1961.2019.00389
|
41 |
张哲峰, 邵琛玮, 王 斌 等. 孪生诱发塑性钢拉伸与疲劳性能及变形机制 [J]. 金属学报, 2020, 56: 476
doi: 10.11900/0412.1961.2019.00389
|
42 |
Zhang Z J, Qu Z, Xu L, et al. A general physics-based hardening law for single phase metals [J]. Acta Mater., 2022, 231: 117877
doi: 10.1016/j.actamat.2022.117877
|
43 |
Zhang Z J, Qu Z, Xu L, et al. Relationship between strength and uniform elongation of metals based on an exponential hardening law [J]. Acta Mater., 2022, 231: 117866
doi: 10.1016/j.actamat.2022.117866
|
44 |
Liu R, Zhang Z J, Zhang P, et al. Extremely-low-cycle fatigue behaviors of Cu and Cu-Al alloys: Damage mechanisms and life prediction [J]. Acta Mater., 2015, 83: 341
doi: 10.1016/j.actamat.2014.10.002
|
45 |
Liu R, Zhang Z J, Li L L, et al. Microscopic mechanisms contributing to the synchronous improvement of strength and plasticity (SISP) for TWIP copper alloys [J]. Sci. Rep., 2015, 5: 9550
doi: 10.1038/srep09550
pmid: 25828192
|
46 |
An X H, Wu S D, Wang Z G, et al. Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys [J]. Acta Mater., 2014, 74: 200
doi: 10.1016/j.actamat.2014.04.053
|
47 |
Liu R, Tian Y Z, Zhang Z J, et al. Exploring the fatigue strength improvement of Cu-Al alloys [J]. Acta Mater., 2018, 144: 613
doi: 10.1016/j.actamat.2017.11.019
|
48 |
Pang J C, Li S X, Wang Z G, et al. General relation between tensile strength and fatigue strength of metallic materials [J]. Mater. Sci. Eng., 2013, A564: 331
|
49 |
Han D, Zhang Y J, Li X W. A crucial impact of short-range ordering on the cyclic deformation and damage behavior of face-centered cubic alloys: A case study on Cu-Mn alloys [J]. Acta Mater., 2021, 205: 116559
doi: 10.1016/j.actamat.2020.116559
|
50 |
Zhang Y J, Han D, Li X W. Improving the stress-controlled fatigue life of low solid-solution hardening Ni-Cr alloys by enhancing short range ordering degree [J]. Int. J. Fatigue, 2021, 149: 106266
doi: 10.1016/j.ijfatigue.2021.106266
|
51 |
Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
doi: 10.1016/j.jmst.2020.06.018
|
52 |
George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
doi: 10.1016/j.actamat.2019.12.015
|
53 |
Yan J X, Zhang Z J, Zhang P, et al. Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys [J]. J Mater. Sci. Technol., 2023, 139: 232
doi: 10.1016/j.jmst.2022.07.031
|
54 |
Zhang P, Zhang Z F. Getting tougher in ultracold [J]. Science, 2022, 378: 947
doi: 10.1126/science.adf2205
pmid: 36454849
|
55 |
Liu D, Yu Q, Kabra S, et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin [J]. Science, 2022, 378: 978
doi: 10.1126/science.abp8070
pmid: 36454850
|
56 |
Hu Q M, Yang R. The endless search for better alloys [J]. Science, 2022, 378: 26
doi: 10.1126/science.ade5503
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|