Please wait a minute...
金属学报  2023, Vol. 59 Issue (4): 467-477    DOI: 10.11900/0412.1961.2022.00548
  综述 本期目录 | 过刊浏览 |
层错能对面心立方金属形变机制与力学性能的影响
张哲峰(), 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏
中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals
ZHANG Zhefeng(), LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng
Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
Zhefeng ZHANG, Keqiang LI, Tuo CAI, Peng LI, Zhenjun ZHANG, Rui LIU, Jinbo YANG, Peng ZHANG. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. Acta Metall Sin, 2023, 59(4): 467-477.

全文: PDF(2222 KB)   HTML
摘要: 

层错能在面心立方(fcc)金属塑性变形和损伤过程中具有重要作用,本文主要总结了以下研究结果:(1) 随层错能降低,fcc金属滑移方式逐渐从易于交滑移的波状滑移方式转变为平面滑移方式,直至发生变形孪生;(2) 为了理解不同位错密度fcc金属中层错能的变化趋势,采用有效层错能的概念,随位错密度增加,有效层错能也随之升高;(3) 层错能降低不是决定fcc金属形变孪生发生的唯一因素,通过第一原理计算模拟滑移和孪生之间的竞争关系,建立了fcc金属形变孪生临界判据;(4) 通过对高层错能、中等层错能以及低层错能fcc金属疲劳位错组态的实验观察和分析,总结了fcc金属中形成规则驻留滑移带的判定条件;(5) 随Al含量增加,Cu-Al合金层错能降低导致平面滑移程度增加,其拉伸强度和均匀延伸率呈现同步提高趋势;(6) 采用指数应变硬化模型可精确描述Cu-Al合金拉伸加工硬化过程,进而预测了不同合金成分和微观组织状态Cu-Al合金屈服强度-抗拉强度-均匀延伸率之间的定量关系;(7) 随Al含量增加,Cu-Al合金疲劳强度升高;在相同应变幅下,随Al含量增加,其低周疲劳寿命也升高。表明合金成分明显影响fcc金属形变损伤机制及微观缺陷(位错、孪生)演变过程,进而显著影响fcc金属及合金拉伸性能和疲劳性能,这为通过合金设计和制备提高fcc金属力学性能及服役可靠性提供了实验证据和理论基础。

关键词 面心立方金属层错能滑移孪生强度塑性疲劳强度    
Abstract

Stacking fault energy (SFE) can play a crucial role in plastic deformation and damage mechanisms of face-centered cubic (fcc) metals. This study mainly summarized the following results: (1) With the reduction of SFE, the slip mode of fcc metals gradually changes from a facile cross-slip wavy mode to a planar mode until deformation twinning occurs; (2) The concept of effective SFE is applied to investigate the variation of SFE with dislocation density in the fcc metals, with the increase in dislocation density, the effective SFE increases; (3) The reduction of SFE is not the only factor determining the formation of deformation twins in fcc metals. In terms of calculating the competition between simulated slipping and twinning using the first principles, the critical criterion for forming deformation twinning in fcc metals was established; (4) The fatigue dislocation configuration of high-, medium-, and low-SFE fcc metals were analyzed and the judgment conditions for forming regular persistent slip bands (PSBs) are proposed; (5) With the increase in Al content, the SFE of Cu-Al alloy decreases, resulting in a simultaneous increasing trend in the tensile strength and the uniform elongation due to the increasing planar slip degree; (6) The exponential strain-hardening model can accurately describe the tensile strain-hardening process of Cu-Al alloys. The quantitative relationship among yield strength, tensile strength, and uniform elongation of Cu-Al alloy with different alloy compositions and microstructure states was successfully predicted; (7) With the increase in Al content, the fatigue strength of Cu-Al alloy is improved. Increasing Al content at the same strain amplitude will enhance its low-cycle fatigue life. Based on the experimental results above, it is shown that the alloy composition affects the deformation and damage mechanisms, and the evolution process of microscopic defects (dislocations, twins) in fcc metals and alloys. Thus, it drastically affects the tensile and fatigue properties of the fcc metals and alloys. These results provide experimental evidence and a theoretical basis for improving the mechanical properties and service reliability of fcc metals and alloys via alloy designing.

Key wordsface-centered cubic metal    stacking fault energy    slip    twinning    strength    plasticity    fatigue strength
收稿日期: 2022-10-27     
ZTFLH:  TG135  
基金资助:国家自然科学基金项目(52130002);国家自然科学基金项目(51901230)
通讯作者: 张哲峰,zhfzhang@imr.ac.cn,主要从事金属材料强韧化机制、疲劳与断裂研究
Corresponding author: ZHANG Zhefeng, professor, Tel: (024)23971043, E-mail: zhfzhang@imr.ac.cn
作者简介: 张哲峰,男,1970年生,研究员,博士
图1  面心立方(fcc)金属典型的滑移方式
ElementRef.[7]Ref.[11]Ref.[3]Range
Al150166166150-166
Ni225128128128-225
Cu70784040-78
Au4545-45
Ag25221616-25
表1  典型fcc金属层错能数值[3,7,11] (mJ·m-2)
图2  fcc金属滑移与形变孪生竞争示意图[24,25]
图3  不同fcc金属在α-β坐标系内从滑移过渡到形变孪生的能力比较[25]
图4  不同fcc金属或合金形成规则梯状驻留滑移带与否机理图[29]
图5  层错能和晶体学取向对滑移带与孪晶界疲劳开裂行为的影响[35,36]
图6  纯Cu及Cu-Al合金拉伸强度-均匀延伸率倒置关系[37]
图7  纯Cu及Cu-Al合金低周(含超低周)疲劳基本性能[37]
图8  纯Cu及Cu-Al合金拉伸强度-疲劳强度关系[37,38,46,47]
1 Pan J S, Tong J M, Tian M B. Fundamentals of Materials Science [M]. Beijing: Tsinghua University Press, 2011: 1
1 潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 2011: 1
2 Anderson P M, Hirth J P, Lothe J. Theory of Dislocations [M]. 3rd Ed., Cambridge: Cambridge University Press, 2017: 1
3 Wang Z R. Cyclic deformation response of planar-slip materials and a new criterion for the wavy-to-planar-slip transition [J]. Philos. Mag., 2004, 84: 351
doi: 10.1080/14786430310001639824
4 Lukáš P, Klesnil M. Cyclic stress-strain response and fatigue life of metals in low amplitude region [J]. Mater. Sci. Eng., 1973, 11: 345
doi: 10.1016/0025-5416(73)90125-0
5 Mughrabi H. On the current understanding of strain gradient plasticity [J]. Mater. Sci. Eng., 2004, A387-389: 209
6 de Campos M F. Selected values for the stacking fault energy of face centered cubic metals [J]. Mater. Sci. Forum, 2008, 591-593: 708
doi: 10.4028/www.scientific.net/MSF.591-593
7 Dillamore I L, Smallman R E, Roberts W T. A determination of the stacking-fault energy of some pure F.C.C. metals [J]. Philos. Mag., 1964, 9: 517
doi: 10.1080/14786436408222963
8 Cockayne D J H, Jenkins M L, Ray I L F. The measurement of stacking-fault energies of pure face-centred cubic metals [J]. Philos. Mag., 1971, 24: 1383
doi: 10.1080/14786437108217419
9 Stobbs W M, Sworn C H. The weak beam technique as applied to the determination of the stacking-fault energy of copper [J]. Philos. Mag., 1971, 24: 1365
doi: 10.1080/14786437108217418
10 Reed R P, Schramm R E. Relationship between stacking-fault energy and X-ray measurements of stacking-fault probability and microstrain [J]. J. Appl. Phys., 1974, 45: 4705
doi: 10.1063/1.1663122
11 Murr L E. Interfacial Phenomena in Metals and Alloys [M]. Reading: Addison-Wesley, 1975: 1
12 Müllner P, Ferreira P J. On the energy of terminated stacking faults [J]. Philos. Mag. Lett., 1996, 73: 289
doi: 10.1080/095008396180551
13 Pierce D T, Jiménez J A, Bentley J, et al. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe-Mn-(Al-Si) steels investigated by experiment and theory [J]. Acta Mater., 2014, 68: 238
doi: 10.1016/j.actamat.2014.01.001
14 Curtze S, Kuokkala V T, Oikari A, et al. Thermodynamic modeling of the stacking fault energy of austenitic steels [J]. Acta Mater., 2011, 59: 1068
doi: 10.1016/j.actamat.2010.10.037
15 Li K Q. Atomistic simulation of the micromechanisms of plastic deformation in face-centered cubic metals [D]. Shenyang: University of Science and Technology of China (Institute of Metal Research, Chinese Academy of Sciences), 2020
15 李克强. 面心立方金属塑性变形微观机制的原子模拟研究 [D]. 沈阳: 中国科学技术大学(中国科学院金属研究所), 2020
16 Li K Q, Zhang Z J, Li L L, et al. Effective stacking fault energy in face-centered cubic metals [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 873
doi: 10.1007/s40195-018-0718-4
17 Gray III G T, Kaschner G C, Mason T A, et al. The influence of interstitial content, temperature, and strain rate on deformation twin formation [A]. Advances in Twinning. Proceedings International Symposium [C]. 1999 TMS Annual Meeting, 1999: 157
18 Chen M W, Ma E, Hemker K J, et al. Deformation twinning in nanocrystalline aluminum [J]. Science, 2003, 300: 1275
pmid: 12714676
19 Wu X L, Zhu Y T. Inverse grain-size effect on twinning in nanocrystalline Ni [J]. Phys. Rev. Lett., 2008, 101: 025503
20 Meyers M A, Vöhringer O, Lubarda V A. The onset of twinning in metals: A constitutive description [J]. Acta Mater., 2001, 49: 4025
doi: 10.1016/S1359-6454(01)00300-7
21 Rogers H C, Reed-Hill R E, Hirth J P. Deformation Twinning [M]. New York: Gordon and Breach Science Publishers, 1964: 1
22 Tadmor E B, Bernstein N. A first-principles measure for the twinnability of FCC metals [J]. J. Mech. Phys. Solids, 2004, 52: 2507
doi: 10.1016/j.jmps.2004.05.002
23 Asaro R J, Suresh S. Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins [J]. Acta Mater., 2005, 53: 3369
doi: 10.1016/j.actamat.2005.03.047
24 Cai T, Zhang Z J, Zhang P, et al. Competition between slip and twinning in face-centered cubic metals [J]. J. Appl. Phys., 2014, 116: 163512
doi: 10.1063/1.4898319
25 Cai T. Computation and simulation for deformation mechanisms of face-centered cubic metals and alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2016
25 蔡 拓. 面心立方金属及合金变形机制计算模拟 [D]. 沈阳: 中国科学院金属研究所, 2016
26 Wei X M, Zhang J M, Xu K W. Generalized stacking fault energy in FCC metals with MEAM [J]. Appl. Surf. Sci., 2007, 254: 1489
doi: 10.1016/j.apsusc.2007.07.078
27 Mughrabi H. The cyclic hardening and saturation behaviour of copper single crystals [J]. Mater. Sci. Eng., 1978, 33: 207
doi: 10.1016/0025-5416(78)90174-X
28 Winter A T. A model for the fatigue of copper at low plastic strain amplitudes [J]. Philos. Mag., 1974, 30: 719
doi: 10.1080/14786437408207230
29 Li P. Study on the cyclic deformation behavior of face-centered cubic crystals [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2009
29 李 鹏. 面心立方晶体循环变形行为研究 [D]. 沈阳: 中国科学院金属研究所, 2009
30 Woods P J. Low-amplitude fatigue of copper and copper-5 at.% aluminium single crystals [J]. Philos. Mag., 1973, 28: 155
31 Wu X M, Wang Z G, Li G Y. Cyclic deformation and strain burst behavior of Cu-7at.%Al and Cu-16at.%Al single crystals with different orientations [J]. Mater. Sci. Eng., 2001, A314: 39
32 Zhang Z F, Wang Z G. Grain boundary effects on cyclic deformation and fatigue damage [J]. Prog. Mater. Sci., 2008, 53: 1025
doi: 10.1016/j.pmatsci.2008.06.001
33 Qu S, Zhang P, Wu S D, et al. Twin boundaries: Strong or weak? [J]. Scr. Mater., 2008, 59: 1131
doi: 10.1016/j.scriptamat.2008.07.037
34 Zhang P, Zhang Z J, Li L L, et al. Twin boundary: Stronger or weaker interface to resist fatigue cracking [J]. Scr. Mater., 2012, 66: 854
doi: 10.1016/j.scriptamat.2012.01.028
35 Zhang Z J. Study on the effect of delamination energy on strength-plasticity matching and fatigue behavior of single-phase copper-zinc alloy [D]. Shenyang: University of Chinese Academy of Sciences (Institute of Metal Research, Chinese Academy of Sciences), 2013
35 张振军. 层错能对单相铜锌合金强度塑性匹配及疲劳行为影响研究 [D]. 沈阳: 中国科学院大学(中国科学院金属研究所), 2013
36 Zhang Z J, Zhang P, Li L L, et al. Fatigue cracking at twin boundaries: Effects of crystallographic orientation and stacking fault energy [J]. Acta Mater., 2012, 60: 3113
doi: 10.1016/j.actamat.2012.02.016
37 Liu R. Study on tensile and fatigue properties of copper-aluminum alloy [D]. Shenyang: University of Chinese Academy of Sciences (Institute of Metal Research, Chinese Academy of Sciences), 2018
37 刘 睿. 铜铝合金拉伸与疲劳性能研究 [D]. 沈阳: 中国科学院大学(中国科学院金属研究所), 2018
38 An X H, Wu S D, Wang Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems [J]. Prog. Mater. Sci., 2019, 101: 1
doi: 10.1016/j.pmatsci.2018.11.001
39 Yang H K, Tian Y Z, Zhang Z F. Revealing the mechanical properties and microstructure evolutions of Fe-22Mn-0.6C-(x)Al TWIP steels via Al alloying control [J]. Mater. Sci. Eng., 2018, A731: 61
40 Sun S J, Tian Y Z, Lin H R, et al. Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure [J]. Mater. Des., 2017, 133: 122
doi: 10.1016/j.matdes.2017.07.054
41 Zhang Z F, Shao C W, Wang B, et al. Tensile and fatigue properties and deformation mechanisms of twinning-induced plasticity steels [J]. Acta Metall. Sin., 2020, 56: 476
doi: 10.11900/0412.1961.2019.00389
41 张哲峰, 邵琛玮, 王 斌 等. 孪生诱发塑性钢拉伸与疲劳性能及变形机制 [J]. 金属学报, 2020, 56: 476
doi: 10.11900/0412.1961.2019.00389
42 Zhang Z J, Qu Z, Xu L, et al. A general physics-based hardening law for single phase metals [J]. Acta Mater., 2022, 231: 117877
doi: 10.1016/j.actamat.2022.117877
43 Zhang Z J, Qu Z, Xu L, et al. Relationship between strength and uniform elongation of metals based on an exponential hardening law [J]. Acta Mater., 2022, 231: 117866
doi: 10.1016/j.actamat.2022.117866
44 Liu R, Zhang Z J, Zhang P, et al. Extremely-low-cycle fatigue behaviors of Cu and Cu-Al alloys: Damage mechanisms and life prediction [J]. Acta Mater., 2015, 83: 341
doi: 10.1016/j.actamat.2014.10.002
45 Liu R, Zhang Z J, Li L L, et al. Microscopic mechanisms contributing to the synchronous improvement of strength and plasticity (SISP) for TWIP copper alloys [J]. Sci. Rep., 2015, 5: 9550
doi: 10.1038/srep09550 pmid: 25828192
46 An X H, Wu S D, Wang Z G, et al. Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys [J]. Acta Mater., 2014, 74: 200
doi: 10.1016/j.actamat.2014.04.053
47 Liu R, Tian Y Z, Zhang Z J, et al. Exploring the fatigue strength improvement of Cu-Al alloys [J]. Acta Mater., 2018, 144: 613
doi: 10.1016/j.actamat.2017.11.019
48 Pang J C, Li S X, Wang Z G, et al. General relation between tensile strength and fatigue strength of metallic materials [J]. Mater. Sci. Eng., 2013, A564: 331
49 Han D, Zhang Y J, Li X W. A crucial impact of short-range ordering on the cyclic deformation and damage behavior of face-centered cubic alloys: A case study on Cu-Mn alloys [J]. Acta Mater., 2021, 205: 116559
doi: 10.1016/j.actamat.2020.116559
50 Zhang Y J, Han D, Li X W. Improving the stress-controlled fatigue life of low solid-solution hardening Ni-Cr alloys by enhancing short range ordering degree [J]. Int. J. Fatigue, 2021, 149: 106266
doi: 10.1016/j.ijfatigue.2021.106266
51 Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
doi: 10.1016/j.jmst.2020.06.018
52 George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
doi: 10.1016/j.actamat.2019.12.015
53 Yan J X, Zhang Z J, Zhang P, et al. Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys [J]. J Mater. Sci. Technol., 2023, 139: 232
doi: 10.1016/j.jmst.2022.07.031
54 Zhang P, Zhang Z F. Getting tougher in ultracold [J]. Science, 2022, 378: 947
doi: 10.1126/science.adf2205 pmid: 36454849
55 Liu D, Yu Q, Kabra S, et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin [J]. Science, 2022, 378: 978
doi: 10.1126/science.abp8070 pmid: 36454850
56 Hu Q M, Yang R. The endless search for better alloys [J]. Science, 2022, 378: 26
doi: 10.1126/science.ade5503
[1] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[4] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[5] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[6] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[7] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[8] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[9] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[10] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[11] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[12] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[13] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[14] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[15] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.