金属学报, 2023, 59(4): 556-566 DOI: 10.11900/0412.1961.2022.00532

研究论文

镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究

邵晓宏1, 彭珍珍2, 靳千千3, 马秀良,1

1中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016

2河北科技大学 材料科学与工程学院 石家庄 050018

3广西科技大学 电子工程学院 先进物质结构研究中心 柳州 545006

Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy

SHAO Xiaohong1, PENG Zhenzhen2, JIN Qianqian3, MA Xiuliang,1

1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

2School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China

3Center for the Structure of Advanced Matter, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China

通讯作者: 马秀良,xlma@imr.ac.cn,主要从事材料界面结构与缺陷的电子显微学研究

责任编辑: 李海兰

收稿日期: 2022-10-21   修回日期: 2022-12-08  

基金资助: 国家自然科学基金项目(51871222)
国家自然科学基金项目(52171021)

Corresponding authors: MA Xiuliang, professor, Tel:(024)23971845, E-mail:xlma@imr.ac.cn

Received: 2022-10-21   Revised: 2022-12-08  

Fund supported: National Natural Science Foundation of China(51871222)
National Natural Science Foundation of China(52171021)

作者简介 About authors

邵晓宏,女,1981年生,研究员,博士

摘要

以含长周期堆垛有序(LPSO)结构的Mg-Zn-Y(-Zr)合金为研究对象,运用透射电子显微方法,从原子尺度解析LPSO结构/富含溶质元素堆垛层错(SFs)对{101¯2}孪晶交汇行为的作用。结果表明:LPSO/SFs与孪晶交截处易形成基面-棱柱面,从而引起孪晶界在LPSO/SFs间弯曲成弓形,孪晶界存在Zn元素偏聚,Y元素偏聚不明显。LPSO/SFs间同轴{101¯2}孪晶变体交汇,引入基面-基面(BB)界面及柱面-柱面(PP)界面,且在近LPSO/SFs处产生三角形的局部基体结构。LPSO结构形成扭折时,{101¯2}孪晶在扭折界面单侧形核长大,此处扭折界面转为孪晶界面;残余扭折界面与基体侧孪晶扩展界面相交,在LPSO/SFs近邻处形成三角形的基体结构。LPSO/SFs/TSFs (孪晶层错)间不同孪晶变体形核,以及交汇引入的分割带来的Hall-Petch效应,可提升合金的硬化率。通过调控镁合金LPSO结构的间距和厚度引入不同孪晶变体,可为其优化性能提供新思路。

关键词: 镁合金; LPSO结构; 孪晶; 球差校正扫描透射电镜; 原子尺度

Abstract

The effect of long-period stacking ordered (LPSO) structure/solute-rich element laminar stacking faults (SFs) on the intersection of co-zone {101¯2} twin variants was uncovered at the atomic scale by TEM. The results show that a basal-prismatic (BP) boundary is generally formed at the intersection of LPSO/SFs and twins, bending the twin boundaries (TBs) into a bow shape between the adjacent LPSO/SFs. The co-zone {101¯2} twin variants and LPSO/SFs intersect with each other, introducing a basal-basal (BB) boundary and prismatic-prismatic (PP) boundaries, associated with a triangular matrix near the LPSO/SFs. More Zn atoms than Y atoms were segregated into the TBs. Also, when the LPSO structure is kinked, the {101¯2} twin generates and grows on one side of the kink boundary, and the local kink boundary transforms into TB. The growing TB intersects with the residual kink boundary, leaving a triangular matrix near the LPSO/SFs. Multiple twin variants nucleate between the LPSO/SFs/TSFs (twinned stacking faults), and the associated Hall-Petch effect is brought by the segmentation introduced by the intersecting of variants, which can improve the Mg alloy hardening rate. Introducing different twin variants by regulating the LPSO structure's spacing and thickness in magnesium alloy may shed new light on optimizing their performance.

Keywords: magnesium alloy; LPSO structure; twin; Cs-corrected STEM; atomic scale

PDF (4541KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566 DOI:10.11900/0412.1961.2022.00532

SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. Acta Metallurgica Sinica, 2023, 59(4): 556-566 DOI:10.11900/0412.1961.2022.00532

随着可持续发展和绿色环保对轻质材料需求的不断增加,高强度镁合金的研究受到广泛关注,是21世纪最具发展潜力的绿色工程材料。然而,其强塑性低和耐蚀性差严重限制了镁合金的工业应用。沉淀强化是提高镁合金力学性能的最有效方法之一[1]。长周期有序堆垛(LPSO)结构具有良好的热稳定性[2,3],可以有效提升Mg-TM-RE (TM = Zn、Cu、Ni、Co,过渡族元素;RE = Y、Dy、Ho、Gd、Tb、Er、Tm,稀土元素)系合金的室温和高温性能[4]。LPSO结构由AB'C'A堆垛单元和不同层数的Mg原子层有序堆垛组成[5~7],不仅结构有序而且化学有序,其中B'和C'富含溶质元素TM和RE。随过渡元素、稀土元素及制备工艺的不同,LPSO结构有较多类型[8~12],其中以18R和14H最为主要。在变形过程中由于异号基面滑移的协同运动,LPSO结构形成扭折,是其强韧化镁合金的主要原因之一[13,14]。扭折形成伴随溶质元素的再分布,可有效稳定扭折界面,从而提升其对性能的贡献[15~17]。而且,晶粒内局部区域存在扭折和孪晶共生,协同提升其塑形[18]

由于六方结构Mg及镁合金独立滑移系的数量有限,孪生在其塑性变形中起到重要作用。{101¯2}拉伸孪晶是镁合金最常见的孪晶类型[19]。理论上,它有6个等效变体,不同{101¯2}孪晶变体之间的相互作用及其对力学性能的贡献成为了该领域的研究热点之一[20~28]。Kadiri等[22]通过电子背散射衍射(EBSD)方法分析了AM30压缩样品中的孪晶行为,发现孪晶的形核和长大取决于晶粒内被激活的孪晶数量,单一孪晶变体易于长大,双孪晶变体将大大促进孪晶的形核从而提升孪晶硬化。Yu等[23,24]将不同孪晶变体交汇分为同轴(孪晶变体交线平行于<12¯10>)和不同轴(孪晶变体交线平行于<2¯2¯43>和<02¯21>),且在压缩Mg单晶样品中表征了孪晶-孪晶界面(TTB)和3种结构的孪晶交汇,包含绗缝状、交织状或TTB处引入二次孪晶。Mokdad等[28]在挤压态AZ31压缩样品中观察到阶梯状和分支状的孪晶交汇形貌。根据晶体学分析,同轴孪晶交汇形成的TTB为约7°小角倾侧晶界,包含基面-基面(BB)界面和柱面-柱面(PP)界面[23,24,29],该界面在纯Mg和AZ31压缩样品中得到了证实[25,30],且常伴随基面-柱面(BP)界面等。对含析出相镁合金,{101¯2}孪晶在扩展过程中一定会与基面或柱面析出相发生交互作用,从而对其变形行为及力学性能产生重要影响[31]。目前,关于析出相对孪晶交汇行为的影响,特别是在原子尺度的认识,尚鲜见报道。

前期工作[32~35]表明,薄片层LPSO结构和高密度富含溶质元素的层错(SFs)平行于基面,具有较大长径比。这些析出相孪晶发生显著交互作用,LPSO/SFs可以一定程度阻碍孪晶扩展,孪晶在一定温度下引起LPSO/SFs空间再分布。在此基础上,本工作以含LPSO结构的Mg97ZnlY2镁合金为研究对象,运用透射电子显微学对室温压缩变形后晶粒内共轴{101¯2}孪晶交汇行为进行原子尺度解析,并探讨LPSO结构/SFs及其扭折对该交汇行为的影响,以期丰富人们对含析出相镁合金中孪晶变体相互作用机理的认识,为镁合金的性能优化提供新思路。

1 实验方法

以高纯Mg (99.99%)、Zn (99.99%)、Mg-25Y (质量分数,%)和Mg-30Zr (质量分数,%)中间合金为原料,通过高频感应炉在Ar气保护下制备Mg97ZnlY2 和Mg96.6Zn1Y2.2Zr0.2 (原子分数,%)镁合金。铸锭经过500℃、12 h的均匀化处理后,线切割制备4 mm × 4 mm × 8 mm的块状试样。压缩变形实验在Gleeble 1500热/力模拟试验机上进行,压缩方向平行于长轴方向,温度为室温,变形速率1 × 10-3 s-1,压缩应变分别为24.1%和36.2%。实验后立即将试样放入水中冷却至室温以保存变形微观结构。透射电镜(TEM)样品主要采用离子减薄制备。用低速锯取下特征位置样品,机械研磨至40 μm,利用Gatan微凹仪挖坑,最后用Gatan 691离子薄化器减薄。为了减少氩离子轰击时对样品的损伤,减薄初始采用4.5 kV、6°入射角,然后逐步降低电压并减小入射角,最后调整至3 kV、3°入射,在结束前降低电压至1.2 kV、3°低能量清扫表面。高倍高角环形暗场像(HAADF)在配备了双球差矫正器的Titan3TM G2 60-300型TEM上获取,操作电压300 kV。拍摄原子尺度扫描透射电子显微镜(STEM)图像时,电子束汇聚角约为25 mrad,束斑直径在0.1 nm以下,所对应分辨率优于0.08 nm。其中TEM像拍摄时电子束平行<101¯2>Mg,图内白线代表基体基面或孪晶基面。界面溶质元素通过配备了能谱仪(EDS)的Tecnai G2 F30进行分析。

2 实验结果与讨论

2.1 镁合金中{101¯2}孪晶交汇

hcp结构Mg及镁合金含有6个{101¯2}孪晶变体,如图1a内T i (i = 1~6)所示。根据晶体学关系,它们之间交互作用分为3组,分别为T1-T4 (图1a)、T1-T2 (图1b)和T1-T3 (图1c)。其中,共轴孪晶T1-T4之间的交线平行于<12¯10>,非共轴孪晶T1-T2和T1-T3之间的交线分别平行于<2¯2¯43>和<02¯21>,不平行于a[23]。当受到沿[101¯0]轴的压应变时,T1-T4孪晶对的最大Schmid因子为0.499,T1-T2和T1-T3孪晶对的Schmid因子为0.125,因此共轴孪晶对更易被激活[23]。{101¯2}孪晶惯析面与基体基面的夹角为43.15°,如图1d所示,则孪晶基面与基体基面的夹角为86.3°。图1e示出萌生于LPSO结构之间{101¯2}孪晶的扩展将与LPSO/SFs存在相互作用。

图1

图1   hcp结构Mg及镁合金中{101¯2}孪晶变体及长周期有序堆垛(LPSO)结构与孪晶的交互作用示意图

Fig.1   Three crystallographically types of twin-twin interactions formed from six {101¯2} twin variants T i (i = 1-6) in an hcp Mg lattice

(a) co-zone twins: T1-T4 twin-twin pair with the intersection line along <12¯10>

(b) non co-zone twins: T1-T2 twin-twin interaction with the intersection along <2¯2¯43>

(c) non co-zone twins: T1-T3 twin-twin interaction with the intersection line along <02¯21>

(d) configuration of {101¯2} twin boundary in an hcp Mg lattice

(e) {101¯2} twin variants formed between the LPSO/SFs (LPSO—long period stacking ordered, SF—stacking fault)


2.2 LPSO/SFs结构间{101¯2}孪晶交汇

含LPSO结构Mg-Zn-Y镁合金晶粒室温压缩前后的低倍HAADF-STEM像分别如图2ac所示。变形前,晶内含有少量薄层LPSO结构及高密度富含溶质元素的SFs,它们的基面与Mg基体基面相平行,LPSO结构与SFs之间含有不同厚度Mg片层。内部有序AB'C'A堆垛单元如图2b所示。变形后,晶粒内形成孪晶与LPSO/SFs发生明显的交互作用,可以观察到多重孪晶萌生。

图2

图2   含LPSO结构Mg-Zn-Y镁合金室温压缩前后的微观结构

Fig.2   Microstructures of Mg-Zn-Y alloy with LPSO structures before (a, b) and after (c) compression at room temperature

(a) low-magnification HAADF-STEM image showing the basal planes of LPSO structures and SFs enriched with Zn and Y atoms are parallel to the basal plane of the matrix in the Mg-Zn-Y alloy

(b) atomic-scale HAADF-STEM image showing AB'C'A building blocks (red lines) in the LPSO

(c) the multiple twins were triggered during compression, and they intersected with the SFs


图3a为SFs间2组{101¯2}孪晶交汇低倍的HAADF-STEM像。可以看出,宽间距SF间(约210 nm)存在多个形变界面,而小间距SF间(17~50 nm)的孪晶界呈现弯曲形貌(红色箭头所示)。孪晶界和SFs均显示较亮衬度,红色矩形区域对应的EDS如插图所示,表明基体SFs富集Zn和Y元素,而孪晶界主要存在Zn元素偏聚。图3b3a中黄色正方形标注区域的高分辨HAADF-STEM像,显示在SF紧邻的孪晶界由BP界面组成,与基面倾转约4°,并且通过基体(0002)和孪晶{101¯0}衍射点所得到的反Fourier转换图(IFFT,图3b插图)表明该界面含有周期性位错,间距约为4.3 nm (如插图所示)。根据Frank公式:L = b / [2sin(θ / 2)] (其中L为2个位错的间距,b为位错Burgers矢量模,θ为小角度晶界的转角),可以计算得到位错间距约为3.98 nm,与测量值相当。由BP界面构成的孪晶界在纯Mg[36]和LPSO镁合金[33]等体系中已有观察,通常会引起孪晶界面偏离惯析面。分析图3b标注TSF处,其堆垛序已经由原来的AB'C'A转为孪晶内ABAB,表明原SF在孪晶过后已转为孪晶取向,因此称之为孪晶层错(twinned stacking fault,TSF)[32,35]图3c图3b中青色长方形区域的原子分辨率HAADF-STEM像,表明{101¯2}孪晶界上溶质元素周期性分布。经过基体(0002)和孪晶的{101¯0}衍射(图3d插图FFT图中的青色虚线圆)进行处理得到其对应的IFFT图(图3d),表明孪晶界上周期性位错间距为1.6 nm。同时可以发现,界面上溶质元素偏聚在位错的压应力处,这主要是源于Zn元素的原子半径小于Mg元素。这与本课题组之前在扭折界面处探测到的元素偏聚相似[15],与经过热处理后形成的界面偏聚元素有所不同[37]

图3

图3   LPSO/SFs间{101¯2}共轴孪晶交汇形成基面-基面(BB)界面和柱面-柱面(PP)界面

Fig.3   BB and PP interfaecs introduced by the co-zone {101¯2} twins intersection between the LPSO/SFs (BB—basal-basal, PP—prismatic-prismatic, TB—twin boundary, TSFs——twinned stacking faults)

(a) low-magnification HAADF-STEM image of the wavy {101¯2} twin boundary formed by {101¯2} twin intersecting with SFs, and the corresponding EDS image showing the segregation of Zn atoms at the TB

(b) atomic-resolution HAADF-STEM image showing the TB deflected from the basal plane of ~4° (Inserted inverse fast Fourier transform (IFFT) image shows a periodic array of dislocations in the twin boundary, which was processed by masking (0002) reflection of the matrix and {101¯0} reflection of the twin)

(c) TB framed by cyan rectangle in Fig.3b deflecting from the {101¯2} plane is segregated with solute atoms

(d) the corresponding IFFT image of Fig.3c processed by masking (0002) of the matrix and {101¯0} reflection of the twin (cyan-color dashed-line circles in the inset fast Fourier transform (FFT) pattern), showing the periodic array of dislocations associated with the TB

(e) high-magnification HAADF-STEM image showing the impingement of multiple twins, leaving a triangular matrix, denoted by M in Fig.3a

(f) twin boundaries and BB boundary delineated by dashed lines, and the corresponding FFT images of TB1, TB2, and BB boundary


图3e为宽间距SFs内部的高倍HAADF-STEM像,左右两侧分别为2个钝角三角形区域。图3f图3e不同界面TB1、TB2和孪晶I和II界面对应的FFT图,可见其中包含3个孪晶以及BB界面。表明孪晶I和II与基体为{101¯2}孪晶取向,孪晶I与III为{101¯1}孪晶取向。孪晶I和II之间为约3°的BB界面,分别与左侧三角形基体(图中M表示,下同)和右侧孪晶III相连。同时,分析图3a中孪晶II和IV之间的界面(TIV处),表明其为PP界面,而孪晶II和IV之间约3°的PP界面分别与上侧孪晶III和下侧基体相连。这与文献[23,24,29]中共轴孪晶交汇所形成的低角度对称倾侧界面相吻合。图3中BB和PP界面均小于理论值。值得注意的是,2个孪晶交汇处形成{101¯1}孪晶。已有报道称非同轴孪晶变体交汇时可引入二次孪晶[23,27],主要因为孪晶交汇时其扩展受到明显抑制。这里二次孪晶的形成是否与TSFs或LPSO结构对孪晶的限制有关,尚待进一步研究。

图4为LPSO/SFs间{101¯2}孪晶内BB界面(黄色箭头所示)和{101¯1}孪晶共存的高倍HAADF-STEM像。图4a中白色虚线勾勒出{101¯2}孪晶界。BB界面广泛存在于TSFs间,而且在不同的TSFs间存在不同程度的偏移,从上到下依次约为38、65和25 nm。同时,间距约为90 nm的TSFs间有{101¯1}孪晶形成。图4b图4a内青色矩形所示区域的原子分辨率图像,表明{101¯1}孪晶与BB界面存在交互作用,插图分别为I~III界面的FFT图,表明I处BB界面的角度约为7°,II和III处呈现{101¯1}孪晶取向。分析可知II界面为带有小台阶的共格{101¯1}孪晶界;而III界面为TSF,上下两侧与界面的夹角分别为39°和86°,宏观构成{101¯1}取向关系。图4c图4a内黄色矩形区域的原子分辨率图像,可见BB界面(约7°)的左右两侧基面均与原基体中SFs基面近乎垂直,表明它们均为{101¯2}孪晶取向,其对应的FFT如插图所示。而且,BB界面与孪晶界(黄色虚线)相连。图4d为BB界面放大图,图4e为通过左右2个孪晶的(0002)衍射点(由图4c青色虚线圆圈标注)得到的BB界面几何相位分析(GPA)图,清晰显示了周期性位错的分布,间距约为2.6 nm。与图3类似,溶质元素偏聚在位错的受压侧。同时,在图4a上端,孪晶没有穿过8个AB'C'A堆垛单元的LPSO结构,在其交界处发现有2个保留基体取向的钝角三角形区域(图4a中M所示),明显可见右侧三角形顶点与BB界面相连。

图4

图4   LPSO/TSFs间{101¯2}孪晶内部BB界面和{101¯1}孪晶共存

Fig.4   TEM images of BB interface and {101¯1} twin within {101¯2} twin between LPSO/SFs

(a) high-magnification HAADF-STEM image showing the twin-induced BB boundary within the LPSO structures, where the TB is delineated by a white dashed line

(b) enlarged image of cyan rectangle framed area showing that the BB coexists with {101¯1} twin. The FFT images corres-ponding to I~III are inserted

(c) enlarged image of yellow rectangle framed area indicating that the BB (~7°) is connected with TB, and the FFT image is inserted

(d) a set of dislocations are displayed at the BB boundary generated by masking (0002) reflections (shown by the cyan dashed circles) of the two crystals

(e) geometric phase analysis (GPA) further confirming the position of dislocation cores (The colour bar indicates change in strain intensity from -0.25 (compressive) to 0.25 (tensile))


图5进一步显示了间距约为20 nm的LPSO结构与TSFs间形成的BB界面(约11°)。图5b和c分别为5a中b和c区域对应的原子分辨率HAADF-STEM像,表明其中BB界面是由间距为1.5 nm的周期性位错组成。图5b表明BB左右两侧区域的基面与基体基面呈{101¯2}孪晶取向。之前有报道[38]认为间距小于50 nm的LPSO间没有孪晶,不同的结果可能源于不同的变形方式。图5b中呈现钝角三角形形貌的区域(M位置)为基体取向,其中红色短线表示基体LPSO结构的AB'C'A堆垛序列。三角形钝角顶点与BB界面相连,两侧边分别为孪晶界。孪晶扩展分别引起了上、下LPSO结构内部的剪切,如图5ab中红色箭头所示。这与本课题组最近观察到单个孪晶通过LPSO结构引起剪切相类似[18]。在相距3.5 nm的TSFs间,观察到有长约4 nm残余SFs存在,如图5c中红色虚线矩形所示区域,表明Mg层间孪晶扩展可能先于LPSO/TSFs处。

图5

图5   LPSO与TSFs间Mg片层内{101¯2}孪晶相交形成BB界面

Fig.5   Microstructure of BB interfaces formed in the Mg layers sandwiched between LPSO and TSFs with a spacing of ~20  nm

(a) high-magnification HAADF-STEM image of BB boundary between LPSO and TSFs, shown by the yellow arrows (b, c) atomic-resolution HAADF-STEM image of the BB boundary of ~11° denoted by b and c in Fig.5a. The array of dislocations processed by masking (0002) reflections of the left and right twin (cyan-color dashed-line circles in the inset FFT pattern) are imposed on the BB boundaries. The original triangular LPSO remains at the intersection between the intersection of left and right twins, where the AB'C'A building blocks are denoted by the red lines in Fig.5b, and very small local SFs with matrix orientation, which was framed by the dashed rectangle in Fig.5c (Inset shows the FFT pattern of the left and right twin. The shearing of LPSO caused by the twin intersection was indicated by the red arrows in Figs.5a and b)


当受到间距为70 nm的LPSO结构限制时,{101¯2}孪晶形核后很快相遇且形成BB界面,如图6a所示。I~V区对应的FFT图,分别表明I区为18R-LPSO结构,II、IV和V呈现{101¯2}孪晶取向,III为约7°的BB界面。近矩形的孪晶II界面由BB界面、2个BP界面和1个柱面-基面(PB)界面组成。图6bc分别为区域b和c的原子分辨率HAADF-STEM像,显示{101¯2}孪晶与基体重叠形成的环状花样[34],分别宽约3和7 nm,如黄色虚线所示。推测孪晶II正在向图6b右下角和图6c左下角扩展,如黄色箭头所示。同时,III处BB界面、区域b和c的界面处可以看到元素偏聚处与实际界面稍有偏离。这可能是由溶质元素与Mg对界面扩展的拖曳作用差异引起的[34]。在靠近LPSO结构处,同样发现有基体取向钝角三角形区域的存在,其顶点与BB界面相连。

图6

图6   LPSO结构间{101¯2}孪晶形核与相遇

Fig.6   High-magnification HAADF-STEM image of a region containing {101¯2} twin embryo and BB boundary between LPSO structure (insets I-V show the FFT images of regions I-V) (a), and atomic-resolution HAADF-STEM images showing the relatively wide overlapping due to the {101¯2} twin and matrix (b, c) (The yellow arrows in Figs.6b and c indicate propagation of the twin towards the matrix (PB—prismatic-basal)


在LPSO/SFs间距为20~100 nm时(图3~6),{101¯2}孪晶变体形核并相遇引入BB界面(3°~11°)。该界面由2个同组的孪晶变体交汇引起(如图1a中T1-T4),同时在其交汇的顶点保留呈三角形形貌的基体取向。此特征在含LPSO/SFs镁合金的研究结果中已有形成[38,39],然而并没有和孪晶交汇建立联系结合图4中TSFs内还存有小片段LPSO/SFs,认为变形可能引起孪晶在LPSO/SFs间多处形核,在其内部横向扩展时相互交汇,然而其快速扩展受到LPSO/SFs的限制。计算表明LPSO结构及AB'C'A堆垛单元的硬度和弹性模量都高于Mg基体[40],该弹性模量不匹配被认为是非基面滑移启动的主要原因[41]。类似地,LPSO/SFs与基体模量的不匹配可在界面处引入局部应变,从而诱发{101¯2}孪晶的多点形核。图7给出了LPSO/SFs间孪晶形核与扩展的示意图。首先,LPSO/SFs处孪晶多点形核。当为单一孪晶变体时,如T1,孪晶扩展并相互融合在LPSO/SFs间扩展(图7b)。在AZ31压缩样品中,Mokdad等[28]通过EBSD方法观测到单一孪晶变体的相互融合长大。当为同轴孪晶变体时,如T1和T4,孪晶扩展交汇形成BB界面,同时连接一个呈钝角三角形的基体(图7c)。Yu等[23]通过计算表明PP界面能低于BB界面能。然而,上述结果表明BB界面在LPSO/SFs间更为常见,而PP界面只在SFs间的孪晶交汇观测到。这主要源于较厚的LPSO对孪晶扩展的抑制高于SFs[32]。LPSO结构类似于阶梯状孪晶交汇中的初始孪晶,其内部形成的孪晶变体在应力作用下扩展,最终构成的交织微观结构示意图如7d所示。高密度LPSO/SFs微观组织在适当条件下,可能激发大量孪晶形核,但限制孪晶长大。鉴于孪晶形核能大于其扩展所需能量,以及孪晶切割形成的Hall-Petch效应,与2组孪晶交汇类似[22],有可能带来明显的硬化率。

图7

图7   LPSO间{101¯2}孪晶形核、扩展与交汇示意图

Fig.7   Schematics of the nucleation (a), propagation of {101¯2} twin via coarsening single variant (b), BB boundaries' formation and associated with triangle matrix at the intersection of two co-zone of {101¯2} twin (c), and the configuration of refining via twin intersection (d) (The blue and red lines between the LPSO structures denote the basal plane of two variants, and the blue and red dash lines represent their twin boundaries, respectively)


2.3 LPSO结构扭折与{101¯2}孪晶交汇的相互作用

图8为高密度SFs间{101¯2}孪晶与扭折的交互作用。孪晶I和孪晶II交汇时形成BB界面,BB界面与三角形形貌的基体相连,由红色箭头所示。其内部存在的少部分基体中形成扭折界面(KB),推测这里KB应是在孪晶交汇后引起的,与之前宏观上观察到的LPSO结构先形成扭折后形成孪晶不同[42,43]

图8

图8   LPSO/SFs内扭折界面(KB)与{101¯2}孪晶共存形貌

Fig.8   Low-magnification HAADF-STEM images of a region containing twin and kink boundary (KB) between the high-density SFs or LPSO structure

(a) the matrix with KB was surrounded by the twins

(b) KB connected with TB, which was also connected with a triangle matrix (denoted by red arrows)

(c) zoom-in image of the area “M” shows the triangle matrix 3 relates to a BB boundary

(d) atomic-resolution HAADF-STEM image of the area d in Fig.8c indicating that the triple intersection consists of BP, KB, and PB

(e) magnification image of area e in Fig.8b suggesting the formation of dislocations with c Burgers vectors in the LPSO structure (red ⊥) due to the twin shear


图8b~d表明LPSO相产生小角度扭折与Mg片层内形成{101¯2}孪晶共存,同时可见多个三角形形貌区域(红色箭头1~4所示)。图8c为三角形区域2~4的放大图,可见区域3的左右两侧为孪晶界,顶端与BB界面相连。区域2交界处的原子分辨率HAADF-STEM像(图8d)显示其由BP、PB和低角扭折界面(LAKB,约10°)组成,其中PB界面与LPSO内KB及下一个Mg片层内TB相连,上、下TB约偏移30 nm。图8e图8b红色矩形区域放大图,表明上面TB通过LAKB与下一个孪晶内BB界面相连。详细分析结果表明三角形区域1、2和4的顶点与TB相连,两边分别为TB和LAKB。这里T-、M-和D-LPSO结构分别厚约80、85和125 nm,它们与孪晶交界时在内部形成含c分量位错,如图8e“⊥”所示,引起堆垛单元的剪切。这与之前Zhang等[44]的研究结果有所不同。他们在冲击变形样品中发现,当LPSO结构厚度为5~30 nm时,{101¯2}孪晶扩展使LPSO内形成位错滑移;厚度为30~50 nm时,LPSO为弹性变形[44]。值得一提的是,由于LPSO结构的衬度远高于其间的Mg片层,使得BB界面的衬度较弱。

当LPSO结构间距减小至30 nm时,其KB与Mg片层内TB相连,孪晶在单侧扭折带内形核长大,如图9所示。图9a显示LPSO结构内35° KB与其间约20 nm Mg片层中TB相连。微小不规则孪晶由BP、PB、左侧孪晶界面(LTB)和右侧孪晶界面(RTB)组成,其与KB左右两侧区域对应的FFT (图9a内插图LTB和RTB)表明它们分别为{101¯2}和{101¯1}孪晶取向。该孪晶基面与KB左右两侧基面夹角分别为88°和123°,左右两侧基面夹角为35°,与LPSO扭折角度相一致。图9b显示约30 nm Mg片层内KB左侧已大部分转为孪晶取向,其与上面基体形成BP界面和共格孪晶界(CTB)相结合的台阶状界面,对应{101¯2}孪晶取向;与右侧扭折带基面的夹角约为108°,与扭折角度相吻合。

图9

图9   LPSO结构扭折促进{101¯2}孪晶在扭折带单侧形核

Fig.9   Atomic-resolution HAADF-STEM image of TB connecting with KB between LPSO structures, where the twinning just nucleated in the left side of the kink (a), and nearly occupied the left side of the kink (b) (LTB—left twin boundary, RTB—right twin boundary, CTB—coherent twin boundary)


前期已有实验运用EBSD方法表明扭折先于孪晶发生,孪晶在扭折界面单侧形核而后在基体内长大,且扭折界面的基面位错有利于促进{101¯2}孪晶形核[42,43]。KB界面能较高,其基面位错运动可能激发Mg晶格通过Shuffle机制促进孪晶在KB界面附近形核,从而引入低能孪晶界面[37,45]。理论分析表明,当扭折角度为8°和30°时,有望在扭折界面处观察到{101¯2}-{101¯2}孪晶、{101¯2}-{101¯1}孪晶及{101¯2}-{101¯3}孪晶组合。同时,Mg层间孪晶界形成使得LPSO结构KB发生偏折,从而一定程度降低其迁移率。

3 结论

(1) LPSO/SFs抑制{101¯2}孪晶的快速扩展,孪晶界由基面-棱柱面、棱柱面-基面和共格孪晶界面组成。

(2) LPSO/SFs/TSFs层间{101¯2}共轴孪晶交汇引入BB界面及PP界面,以前者为主,在其交汇处保留具有三角形形貌的基体,这是由其晶体学关系决定的。LPSO/SFs间孪晶变体多点形核,孪晶交汇形成的BB面分割Mg层带来Hall-Petch效应,有望带来明显硬化效果。

(3) LPSO层间孪晶交汇与变形扭折可共存。扭折界面处位错促进{101¯2}孪晶在扭折界面单侧形核,使得扭折界面向孪晶界面转变,降低系统能量。

参考文献

Nie J F.

Precipitation and hardening in magnesium alloys

[J]. Metall. Mater. Trans., 2012, 43A: 3891

[本文引用: 1]

Kawamura Y, Hayashi K, Inoue A, et al.

Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa

[J]. Mater. Trans., 2001, 42: 1172

DOI      URL     [本文引用: 1]

Abe E, Kawamura Y, Hayashi K, et al.

Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-ontrast STEM

[J]. Acta Mater., 2002, 50: 3845

DOI      URL     [本文引用: 1]

Kawamura Y, Yamasaki M.

Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure

[J]. Mater. Trans., 2007, 48: 2986

DOI      URL     [本文引用: 1]

Zhu Y M, Morton A J, Nie J F.

The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys

[J]. Acta Mater., 2010, 58: 2936

DOI      URL     [本文引用: 1]

Abe E, Ono A, Itoi T, et al.

Polytypes of long-period stacking structures synchronized with chemical order in a dilute Mg-Zn-Y alloy

[J]. Philos. Mag. Lett., 2011, 91: 690

DOI      URL    

Shao X H, Yang H J, De Hosson J T M, et al.

Microstructural characterization of long-period stacking ordered phases in Mg97Zn1Y2 (at. %) alloy

[J]. Microsc. Microanal., 2013, 19: 1575

DOI      URL     [本文引用: 1]

Transmission electron microscopy characterization of two major long-period stacking ordered (LPSO) phases in Mg–Zn–Y alloy, i.e., 18R- and 14H-LPSO are reported. The space group and atomic-scale microstructures of both compounds were determined using a combination of electron diffraction, convergent beam electron diffraction, high-resolution transmission electron microscopy, and Z-contrast scanning transmission electron microscopy. The 18R-LPSO phase is demonstrated to have a point group and space group 3m and R3m (or 3m and R3m), with the lattice parameter a = 1.112 nm and c = 4.689 nm in a hexagonal coordinate system. The 14H-LPSO phase has a point group 6/mmm and a space group P63 /mmc, and the lattice parameter is a = 1.112 nm and c = 3.647 nm. In addition, insertion of extra thin Mg platelets of several atomic layers, results in stacking faults in the LPSO phase. These results may shed some new light on a better understanding of the microstructure and deformation mechanisms of LPSO phases in Mg alloys.

Zhu Y M, Morton A J, Nie J F.

Growth and transformation mechanisms of 18R and 14H in Mg-Y-Zn alloys

[J]. Acta Mater., 2012, 60: 6562

DOI      URL     [本文引用: 1]

Jin Q Q, Fang C F, Mi S B.

Formation of long-period stacking ordered structures in Mg88 M5Y7 (M = Ti, Ni and Pb) casting alloys

[J]. J. Alloys Compd., 2013, 568: 21

DOI      URL    

Mi S B, Jin Q Q.

New polytypes of long-period stacking ordered structures in Mg-Co-Y alloys

[J]. Scr. Mater., 2013, 68: 635

DOI      URL    

Jin Q Q, Shao X H, Hu X B, et al.

New polytypes of long-period stacking ordered structures in a near-equilibrium Mg97Zn1Y2 alloy

[J]. Philos. Mag. Lett., 2017, 97: 180

DOI      URL    

Jin Q Q, Shao X H, Peng Z Z, et al.

Crystallographic account of an ultra-long period stacking ordered phase in an Mg88Co5Y7 alloy

[J]. J. Alloys Compd., 2017, 693: 1035

DOI      URL     [本文引用: 1]

Shao X H, Yang Z Q, Ma X L.

Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure

[J]. Acta Mater., 2010, 58: 4760

DOI      URL     [本文引用: 1]

Hagihara K, Li Z X, Yamasaki M, et al.

Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys

[J]. Acta Mater., 2019, 163: 226

DOI      [本文引用: 1]

The unusual increase in the strength by extrusion is a unique feature of recently developed Mg alloys containing the LPSO phase. In this study, we first elucidated the detailed mechanisms that induce this drastic strengthening. The dependencies of the deformation behavior of a Mg88Zn4Y7 extruded alloy, which contains similar to 86-vol% LPSO phase, on the temperature, loading orientation, and extrusion ratio were examined. It was found that the yield stress of the alloy is drastically increased by extrusion, but the magnitude of the increase in the yield stress is significantly different depending on the loading orientation. That is, the strengthening of the LPSO phase by extrusion shows a strong anisotropy. By the detailed analyses, this was clarified to be derived from the variation in the deformation mechanisms depending on the loading orientation and extrusion ratio. Basal slip was found to govern the deformation behavior when the loading axis was inclined at a 45 to the extrusion direction, while the predominant deformation mechanism varies from basal slip to the formation of deformation kink bands as the extrusion ratio increased when the loading axis was parallel to the extrusion direction. Moreover, it was clarified in this study that the introduction of a deformation-kink-band boundary during extrusion effectively acts as a strong obstacle to basal slip. That is, "the kink band strengthening" was first quantitatively elucidated, which contributes to the drastic increase in the yield stress of the extruded LPSO-phase alloys in the wide temperature range below 400 degrees C. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd.

Shao X H, Peng Z Z, Jin Q Q, et al.

Atomic-scale segregations at the deformation-induced symmetrical boundary in an Mg-Zn-Y alloy

[J]. Acta Mater., 2016, 118: 177

DOI      URL     [本文引用: 2]

Peng Z Z, Shao X H, Jin Q Q, et al.

Dislocation configuration and solute redistribution of low angle kink boundaries in an extruded Mg-Zn-Y-Zr alloy

[J]. Mater. Sci. Eng., 2017, A687: 211

Peng Z Z, Jin Q Q, Shao X H, et al.

Effect of temperature on deformation mechanisms of the Mg88Co5Y7 alloy during hot compression

[J]. Mater. Charact., 2019, 151: 553

DOI      [本文引用: 1]

The deformation mechanisms and microstructure evolution of Mg88Co5Y7 (at.%) alloy with long period stacking ordered (LPSO) phase during compression at 373-673 K have been studied using transmission electron microscopy. The alloy consists of alpha-Mg matrix, interdendritic LPSO phase, and other Mg-Co-Y intermetallic compounds. Increasing temperature leads to a general decrease in strength of the Mg88Co5Y7 alloy. A large number of {10 (1) over bar2} tension twins and deformation bands are activated in the matrix, whereas basal slip and deformation kink dominate in the LPSO structures during compression at 373 and 473 K. Non-basal slip in matrix and almost no dynamic recrystallization are responsible for high strength and the good ductility of sample deformed at 573 K. Recrystallization of Mg matrix occurs upon deformation at 673 K, dramatically lowering the corresponding strength. Further, the grain boundary pinning effect from LPSO phase, MgYCo4 phase, and broken Mg-3(Co, Y) segments is supposed to account for the relatively high strength of Mg88Co5Y7 alloy at high temperatures.

Peng Z Z, Shao X H, Liang Z M, et al.

Synergetic deformation mechanisms in an Mg-Zn-Y-Zr alloy with intragranular LPSO structures

[J]. J. Magnes. Alloy., 2022, doi: 10.1016/j.jma.2022.09.010

[本文引用: 2]

Barnett M R.

Twinning and the ductility of magnesium alloys: Part I: “Tension” twins

[J]. Mater. Sci. Eng., 2007, A464: 1

[本文引用: 1]

Roberts E, Partridge P G.

The accommodation around {1012}<1011> twins in magnesium

[J]. Acta Metall., 1966, 14: 513

DOI      URL     [本文引用: 1]

Park S H, Hong S G, Lee C S.

Activation mode dependent { 10 1 ¯ 2 }<1011> twinning characteristics in a polycrystalline magnesium alloy

[J]. Scr. Mater., 2010, 62: 202

DOI      URL    

El Kadiri H, Kapil J, Oppedal A L, et al.

The effect of twin-twin interactions on the nucleation and propagation of { 10 1 ¯ 2 } twinning in magnesium

[J]. Acta Mater., 2013, 61: 3549

DOI      URL     [本文引用: 2]

Yu Q, Wang J, Jiang Y Y, et al.

Twin-twin interactions in magnesium

[J]. Acta Mater., 2014, 77: 28

DOI      URL     [本文引用: 7]

Yu Q, Wang J, Jiang Y Y, et al.

Co-zone { 10 1 ¯ 2 } twin interaction in magnesium single crystal

[J]. Mater. Res. Lett., 2014, 2: 82

DOI      URL     [本文引用: 3]

Sun Q, Zhang X Y, Ren Y, et al.

Observations on the intersection between { 10 1 ¯ 2 } twin variants sharing the same zone axis in deformed magnesium alloy

[J]. Mater. Charact., 2015, 109: 160

DOI      URL     [本文引用: 1]

Shi D F, Liu T M, Hou D W, et al.

The effect of twin-twin interaction in Mg-3Al-1Zn alloy during compression

[J]. J. Alloys Compd., 2016, 685: 428

DOI      URL    

Chen H C, Liu T M, Xiang S H, et al.

Abnormal migration of twin boundaries in rolled AZ31 alloy containing intersecting { 10 1 ¯ 2 } extension twins

[J]. J. Alloys Compd., 2017, 690: 376

DOI      URL     [本文引用: 1]

Mokdad F, Chen D L, Li D Y.

Single and double twin nucleation, growth, and interaction in an extruded magnesium alloy

[J]. Mater. Des., 2017, 119: 376

DOI      URL     [本文引用: 3]

Wang J, Yu Q, Jiang Y Y, et al.

Twinning-associated boundaries in hexagonal close-packed metals

[J]. JOM, 2014, 66: 95

DOI      URL     [本文引用: 2]

Morrow B M, Cerreta E K, McCabe R J, et al.

Toward understanding twin-twin interactions in hcp metals: Utilizing multiscale techniques to characterize deformation mechanisms in magnesium

[J]. Mater. Sci. Eng., 2014, A613: 365

[本文引用: 1]

Christian J W, Mahajan S.

Deformation twinning

[J]. Prog. Mater. Sci., 1995, 39: 1

DOI      URL     [本文引用: 1]

Shao X H, Yang Z Q, Ma X L.

Interplay between { 10 1 ¯ 2 } deformation twins and basal stacking faults enriched with Zn/Y in Mg97Zn1Y2 alloy

[J]. Philos. Mag. Lett., 2014, 94: 150

DOI      URL     [本文引用: 3]

Shao X H, Zheng S J, Chen D, et al.

Deformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy

[J]. Sci. Rep., 2016, 6: 30096

DOI      PMID      [本文引用: 1]

The high hardness or yield strength of an alloy is known to benefit from the presence of small-scale precipitation, whose hardening effect is extensively applied in various engineering materials. Stability of the precipitates is of critical importance in maintaining the high performance of a material under mechanical loading. The long period stacking ordered (LPSO) structures play an important role in tuning the mechanical properties of an Mg-alloy. Here, we report deformation twinning induces decomposition of lamellar LPSO structures and their re-precipitation in an Mg-Zn-Y alloy. Using atomic resolution scanning transmission electron microscopy (STEM), we directly illustrate that the misfit dislocations at the interface between the lamellar LPSO structure and the deformation twin is corresponding to the decomposition and re-precipitation of LPSO structure, owing to dislocation effects on redistribution of Zn/Y atoms. This finding demonstrates that deformation twinning could destabilize complex precipitates. An occurrence of decomposition and re-precipitation, leading to a variant spatial distribution of the precipitates under plastic loading, may significantly affect the precipitation strengthening.

Shao X H, Peng Z Z, Jin Q Q, et al.

Unravelling the local ring-like atomic pattern of { 10 1 ¯ 2 } twin boundary in an Mg-Zn-Y alloy

[J]. Philos. Mag., 2019, 99: 306

DOI      [本文引用: 2]

Understanding the interactions between deformation twins and plate-like phases in magnesium alloys is one of the key issues to tailor the microstructure of magnesium alloys for better mechanical properties. The {102} twin boundary with the local ring-like atomic pattern in magnesium alloy, accompanied by the interaction between deformation twin and solute atoms, has been investigated using aberration-corrected scanning transmission electron microscopy. We found that these boundaries featured local overlapping morphology near the intersection between deformation twins and stacking faults (SFs) enriched with solute atoms. The overlapping morphology is proposed to be induced by the asynchronous shuffling of the SFs and matrix during the twinning. The local ring-like atomic patterns shown here imply that the shearable specific SFs in magnesium alloys will increase twinning energy and resultantly hinder twinning propagation.

Shao X H, Jin Q Q, Zhou Y T, et al.

Basal shearing of twinned stacking faults and its effect on mechanical properties in an Mg-Zn-Y alloy with LPSO phase

[J]. Mater. Sci. Eng., 2020, A779: 139109

[本文引用: 2]

Liu B Y, Wang J, Li B, et al.

Twinning-like lattice reorientation without a crystallographic twinning plane

[J]. Nat. Commun., 2014, 5: 3297

DOI      [本文引用: 1]

Nie J F, Zhu Y M, Liu J Z, et al.

Periodic segregation of solute atoms in fully coherent twin boundaries

[J]. Science, 2013, 340: 957

DOI      PMID      [本文引用: 2]

The formability and mechanical properties of many engineering alloys are intimately related to the formation and growth of twins. Understanding the structure and chemistry of twin boundaries at the atomic scale is crucial if we are to properly tailor twins to achieve a new range of desired properties. We report an unusual phenomenon in magnesium alloys that until now was thought unlikely: the equilibrium segregation of solute atoms into patterns within fully coherent terraces of deformation twin boundaries. This ordered segregation provides a pinning effect for twin boundaries, leading to a concomitant but unusual situation in which annealing strengthens rather than weakens these alloys. The findings point to a platform for engineering nano-twinned structures through solute atoms. This may lead to new alloy compositions and thermomechanical processes.

Shao J B, Chen Z Y, Chen T, et al.

The interaction between ( 10 1 ¯ 2 ) twinning and long-period stacking ordered (LPSO) phase during hot rolling and annealing process of a Mg-Gd-Y-Zn-Zr alloy

[J]. Metall. Mater. Trans., 2021, 52A: 520

[本文引用: 2]

Chen T, Chen Z Y, Shao J B, et al.

Interactions between kinking and { 10 1 ¯ 2 } twinning in a Mg-Zn-Gd alloy containing long period stacking ordered (LPSO) phase

[J]. Mater. Sci. Eng., 2019, A767: 138418

[本文引用: 1]

Tane M, Nagai Y, Kimizuka H, et al.

Elastic properties of an Mg-Zn-Y alloy single crystal with a long-period stacking-ordered structure

[J]. Acta Mater., 2013, 61: 6338

DOI      URL     [本文引用: 1]

Kim K H, Jeon J B, Kim N J, et al.

Role of yttrium in activation of <c + a> slip in magnesium: An atomistic approach

[J]. Scr. Mater., 2015, 108: 104

DOI      URL     [本文引用: 1]

Zhang Y, Shao J B, Chen T, et al.

Deformation mechanism and dynamic recrystallization of Mg-5.6Gd-0.8Zn alloy during multi-directional forging

[J]. Acta Metall. Sin., 2020, 56: 723

DOI      [本文引用: 2]

Multi-directional forging (MDF) is an effective way to fabricate wrought magnesium alloy with ultrafine grains and random texture. Therefore, microstructure evolution and dynamic recrystallization (DRX) of magnesium alloys during MDF process have been widely investigated. Mg-Zn-RE alloys containing long-period stacking ordered (LPSO) phase have received considerable attention owing to their excellent mechanical properties. In addition, LPSO phase has great effects on the deformation mechanism and DRX behavior. Still, limited comprehensive studies can be found in the literature dealing with the microstructure evolution, deformation mechanism and DRX of magnesium alloys containing LPSO phase in MDF deformation. In this work, MDF was applied to a Mg-5.6Gd-0.8Zn (mass fraction, %) alloy containing LPSO phase. Microstructure characteristics, deformation mechanism and DRX behavior of the material in different passes were examined. Results show that there are several stages of the microstructure evolution. Twinning was activated only in a small part of grains in the early stage of deformation. As the forging direction changes, the number of twinned grains and the volume fraction of DRX grains increased. A mixed structure with coarse deformed grain and DRX grains was sustained till last forging pass, and the average size of DRX grains is about 4 μm with a random orientation. {101ˉ2} tensile twinning is the main deformation mechanism and the selection of twin variants was dominated by the Schmid law. Change in forging direction is beneficial to twinning stimulation in grains of different orientations. Kink and slipping deformation could effectively accommodate the plastic strain where the operation of twinning was hindered. Kink deformation resulted in lattice rotation predominately about the <101ˉ0> axis. DRX grains nucleated at different places during the forging process. Not only the grain boundaries and the twinned region, but also kink boundaries can induce the nucleation of DRX grains. Eventually, the twinned regions were transformed to a strip-like recrystallization structure. Under the combined influence of twinning and kinking, as well as DRX induced by twins, kink bands and grain boundaries, the initial coarse grains were significantly refined.

张 阳, 邵建波, 陈 韬 .

Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶

[J]. 金属学报, 2020, 56: 723

[本文引用: 2]

Wang L, Sabisch J, Lilleodden E T.

Kink formation and concomitant twin nucleation in Mg-Y

[J]. Scr. Mater., 2016, 111: 68

DOI      URL     [本文引用: 2]

Zhang F, Ren Y, Yang Z Q, et al.

The interaction of deformation twins with long-period stacking ordered precipitates in a magnesium alloy subjected to shock loading

[J]. Acta Mater., 2020, 188: 203

DOI      URL     [本文引用: 2]

Wang J, Beyerlein I J.

Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals

[J]. Model. Simul. Mater. Sci. Eng., 2012, 20: 024002

[本文引用: 1]

/