Please wait a minute...
金属学报  2023, Vol. 59 Issue (4): 547-555    DOI: 10.11900/0412.1961.2022.00551
  研究论文 本期目录 | 过刊浏览 |
GH4061合金在高压富氧环境下的燃烧行为
曹姝婷1,2, 张少华1(), 张健1()
1中国科学院金属研究所 沈阳 110016
2中国科学技术大学 材料科学与工程学院 沈阳 110016
Combustion Behavior of GH4061 Alloy in High Pressure and Oxygen-Enriched Atmosphere
CAO Shuting1,2, ZHANG Shaohua1(), ZHANG Jian1()
1Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

曹姝婷, 张少华, 张健. GH4061合金在高压富氧环境下的燃烧行为[J]. 金属学报, 2023, 59(4): 547-555.
Shuting CAO, Shaohua ZHANG, Jian ZHANG. Combustion Behavior of GH4061 Alloy in High Pressure and Oxygen-Enriched Atmosphere[J]. Acta Metall Sin, 2023, 59(4): 547-555.

全文: PDF(2250 KB)   HTML
摘要: 

基于自主研制的金属富氧燃烧实验设备,在O2浓度为99.5%、压强为3.5~25 MPa条件下,对GH4061合金进行了燃烧实验,使用高速相机、SEM、EDS和XRD对合金燃烧过程以及燃烧后的试棒进行观察分析,研究了高压富氧条件下GH4061合金的燃烧过程,并分析了其燃烧机理。结果表明,随着O2压强的提高,试棒燃烧长度增大,同时燃烧速率加快。根据ASTM-G124标准,GH4061合金在99.5%纯O2室温点燃条件下,燃烧阈值约为5 MPa。合金的燃烧区域自上而下可以分为过渡区、熔化区、燃烧前沿和氧化物区。燃烧过程中,燃烧热较高的元素优先燃烧,液态金属与O2接触发生反应形成熔融的氧化物,其中密度较低的氧化物会上浮至熔化区,并在上浮过程中凝固形成尺寸较小的富Al/Ti氧化物和尺寸较大、具有枝晶形貌的混合氧化物。基于热力学理论,分析了O2压强对合金燃烧行为的影响。

关键词 金属燃烧高压富氧高温合金燃烧机理    
Abstract

Liquid oxygen (LOX)/kerosene rocket engines are the main power system of heavy launch vehicles around the globe, and the turbine materials are usually exposed to elevated temperatures, high pressure, and oxygen-enriched environment in gas generators. Metal combustion may occur under these working conditions. GH4061 is a newly developed Ni-based superalloy that is used in turbine materials because of its excellent mechanical properties. However, its combustion resistance property has rarely been studied. Recently, several studies on metal combustion have been conducted, but they mainly focus on exploring the rules of metal combustion. Furthermore, the domestically promoted ignition-combustion (PIC) experiment equipment only supports the test under 2 MPa pressure, which has significantly limited the study of metal combustion at higher pressure. Therefore, the analysis of the metal combustion mechanism remains incomplete. In this study, the 3.5-25 MPa high pressure and oxygen-enriched combustion experiments of GH4061 alloy were performed on the basis of independently-developed PIC equipment with a maximum pressure of 25 MPa. A high-speed camera was used to observe and record the combustion process. The postcombustion microstructure was characterized using SEM and EDS, and the combustion product was identified using XRD. The length and rate of burning increase as the oxygen pressure increases. The critical burning pressure of GH4061 under 99.5% oxygen (when igniting at 25oC) is about 5 MPa, according to ASTM-G124. After testing, the transition zone, melting zone, ignition interface, and oxide zone in the samples were characterized. The burning process is due to elements with a higher heat of combustion. During combustion, lower-density molten oxides float up to the melting zone. After testing, small O/Al/Ti-rich particles and large complex oxide particles with dendritic morphology were observed in the melting zone. The effect of oxygen pressure was analyzed using thermodynamics.

Key wordsmetal combustion    high pressure    oxygen-enriched    superalloy    combustion mechanism
收稿日期: 2022-10-31     
ZTFLH:  TG146.15  
基金资助:国家自然科学基金项目(52150233);中国科学院重点部署项目(ZDRW-CN-2021-2-1)
通讯作者: 张 健,jianzhang@imr.ac.cn,主要从事高温合金的研究;
张少华,zhangshaohua@imr.ac.cn,主要从事高温合金的研究
Corresponding author: ZHANG Jian, professor, Tel: (024)23971196, E-mail: jianzhang@imr.ac.cn;ZHANG Shaohua, associate professor, Tel: (024)23748882, E-mail: zhangshaohua@imr.ac.cn
作者简介: 曹姝婷,女,1996年生,博士生
图1  实验腔室内部试棒放置方式及不同压强下燃烧前后的试棒
图2  GH4061合金在实验压强为3.5 MPa时的燃烧过程
图3  GH4061合金在不同压强(P)下燃烧后相对剩余长度和燃烧速率(V)
图4  GH4061合金在7 MPa压强下燃烧后燃烧区域的截面组织
图5  GH4061合金在7 MPa压强下燃烧后燃烧区域前端氧化物区形貌以及EDS元素分布
图6  GH4061合金在7 MPa压强下燃烧后燃烧区域内熔化区球形氧化物形貌
图7  GH4061合金在3.5、7和25 MPa压强下燃烧后燃烧产物的XRD谱
ElementHeat ofOxideMelting
combustiondensitypoint
kJ·mol-1g·cm-3K
Al8423.50 (Al2O3)2327
Ti9124.26 (TiO2)2113
V7523.35 (V2O5)963
Cr5655.21 (Cr2O3)2708
Nb9674.47 (Nb2O3)1758
Fe3645.18 (Fe3O4)1867
Mo7514.69 (MoO3)1068
Ni2406.67 (NiO)2253
Cu1596.32 (CuO)1599
表1  金属元素的燃烧热及其氧化物熔点、密度[2]
图8  GH4061合金燃烧过程示意图
图9  GH4061合金燃烧反应的lnKΘ-T曲线图以及比较lnKΘ与实验O2压强的lnJ
1 Huang J F, Zhao G P, Jiao L Y, et al. Combustion failure analysis of GH202 and GH586 superalloys for rocket engine [J]. J. Iron Steel Res., 2005, 17(3): 68
1 黄进峰, 赵光普, 焦兰英 等. 火箭发动机用合金GH202和GH586燃烧事故分析 [J]. 钢铁研究学报, 2005, 17(3): 68
2 Grosse A V, Conway J B. Combustion of metals in oxygen [J]. Ind. Eng. Chem., 1958, 50: 663
doi: 10.1021/ie50580a040
3 Tekumalla S, Gupta M. An insight into ignition factors and mechanisms of magnesium based materials: A review [J]. Mater. Des., 2017, 113: 84
doi: 10.1016/j.matdes.2016.09.103
4 Shao L, Xie G L, Liu X H, et al. Combustion behaviour and mechanism of a Cu-Ni-Mn alloy in an oxygen enriched atmosphere [J]. Corros. Science., 2020, 163: 108253
doi: 10.1016/j.corsci.2019.108253
5 Yoffe P. The burning of metals [J]. Proc. Roy. Soc., 1961, 261A: 357
6 Monroe R W, Bates C E, Pears C D. Metal combustion in high-pressure flowing oxygen [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres [C]. Phoenix: ASTM, 1983: 126
7 Hill P R. High temperature oxidation and ignition of metals [R]. Washington: National Advisory Committee for Aeronautics, 1956
8 Stradling J S, Pippen D L, Frye G W. Techniques employed by the NASA White Sands Test Facility to ensure oxygen system component safety [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres [C]. Phoenix: ASTM, 1983: 97
9 Neary R M. ASTM G 63: A milestone in a 60-year safety effort [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres [C]. Phoenix: ASTM, 1983: 3
10 Million J F, Samant A, Zawierucha R, et al. Promoted ignition-combustion behavior of cobalt and nickel alloys in oxygen-enriched atmospheres [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: 12th Volume [C]. Berlin: ASTM, 2009: 10
11 American Society for Testing Material. Standard Test Method for Determining the Combustion Behavior of Metallic Materials in Oxygen-Enriched Atmospheres [S]. West Conshohocken: ASTM International, 2010
12 Benz F J, Shaw R C, Homa J M. Burn propagation rates of metals and alloys in gaseous oxygen [A]. The Symposium on Compatibility and Sensitivity of Materials in Oxygen-Enriched Atmospheres:Second Volume [C]. Washington: ASTM, 1986: 135
13 Zawierucha R, Million J F. Promoted ignition-combustion behavior of engineering alloys at elevated temperatures and pressures in oxygen gas mixtures [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Fourth Volume [C]. Las Cruces: ASTM, 1989: 145
14 American Society for Testing Material. Standard Test Method for Determining the Combustion Behavior of Metallic Materials in Oxygen-Enriched Atmospheres [S]. West Conshohocken: ASTM International, 2018
15 Zabrenski J S, Werley B L, Slusser J W. Pressurized flammability limits of metals [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Fourth Volume [C]. Las Cruces: ASTM, 1989: 178
16 Sircar S, Stoltzfus J, Bryan C, et al. Promoted combustion of pure metals in oxygen-enriched atmospheres [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Seventh Volume [C]. Denver: ASTM, 1995: 100
17 Zawierucha R, Robert K, Mazzarella R B. Promoted ignition-combustion behavior of selected hastelloys in oxygen gas mixtures [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Fifth Volume [C]. Cocoa Beach: ASTM 1989: 270
18 Bryan C J, Stoltzfus J M, Gunaji M V. An assessment of the flammability hazard of several corrosion resistant metal alloys [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Sixth Volume [C]. Noordwijk: ASTM, 1993: 112
19 Stoltzfus J M, Homa J M, Williams R E, et al. ASTM committee G-4 metals flammability test program data and discussion [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Fourth Volume [C]. Churchill College: ASTM, 1987: 33
20 Benz F, Steinberg T A, Janoff D. Combustion of 316 stainless steel in high-pressure gaseous oxygen [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Fourth Volume [C]. Las Cruces: ASTM, 1989: 195
21 Gunaji M V, Sircar S, Beeson H D. Ignition and combustion of titanium and titanium alloys [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Seventh Volume [C]. Denver: ASTM, 1995: 81
22 Janoff D, Pedley M D. Configurational effects on the combustion of several alloy systems in oxygen-enriched atmospheres [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Eighth Volume [C]. West Conshohocken: ASTM, 1997: 147
23 Huang J F, Yu H Y, Li Y B, et al. Oxidation characteristic and mechanism of superalioys in oxygen-enriched atmosphere [J]. J. Iron Steel Res., 2009, 21(3): 51
doi: 10.1016/S1006-706X(14)60120-5
23 黄进峰, 余红燕, 李永兵 等. 富氧气氛下高温合金氧化特征及机理 [J]. 钢铁研究学报, 2009, 21(3): 51
24 Shi L F, Huang J F, Zhao G P, et al. Research on combustion characteristics and properties of superailoy in high-pressure and oxygen-enriched atmosphere [J]. Hot Working Tech., 2007, 36(4): 26
24 施立发, 黄进峰, 赵光普 等. 高压富氧下几种高温合金的燃烧特征和性能研究 [J]. 热加工工艺, 2007, 36(4): 26
25 Wang H L, Huang J F, Lian Y, et al. Combustion behavior of GH4169 and GH4202 superalloys in oxygen-enriched atmosphere [J]. Chin. J. Eng., 2016, 38: 1288
25 王宏亮, 黄进峰, 连 勇 等. 高温合金GH4169与GH4202在富氧气氛中的燃烧行为 [J]. 工程科学学报, 2016, 38: 1288
26 He Y W. Study on the effect and mechanism of V, Cu in a new Ni-Cr-Fe-Nb superalloy [D]. Shenyang: Northeastern University, 2016
26 贺玉伟. V、Cu在新型Ni-Cr-Fe-Nb高温合金中的作用机理研究 [D]. 沈阳: 东北大学, 2016
27 American Society for Testing Material. Standard Guide for Evaluating Metals for Oxygen Service [S]. West Conshohocken: ASTM International, 2014
28 Bransford J W. Ignition and combustion temperatures determined by laser heating [A]. The Symposium on Compatibility and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Second Volume [C]. Washington: ASTM, 1986: 78
29 Steinberg T A, Wilson D B, Benz F J. Microgravity and normal gravity combustion of metals and alloys in high pressure oxygen [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Sixth Volume [C]. Noordwijk: ASTM, 1993: 136
30 Fueki K. T-G diagram and its applications to high temperature oxidation of pure metals [J]. Denkikagaku, 1958, 26: 292
31 Engel C D, Herald S D, Davis S E. Promoted metals combustion at ambient and elevated temperatures [A]. The Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Eleventh Volume [C]. Washington: ASTM, 2006: 62
32 Hirano T, Sato K, Sato Y, et al. Prediction of metal fire spread in high-pressure oxygen [J]. Combust. Sci. Technol., 1983, 32: 137
doi: 10.1080/00102208308923656
33 Hirano T, Sato Y, Sato K, et al. The rate determining process of iron oxidation at combustion in high pressure oxygen [J]. Oxid. Commun., 1984, 6: 113
[1] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[5] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[7] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[8] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[9] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[10] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[11] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[12] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[13] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[14] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[15] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.