Please wait a minute...
金属学报  2023, Vol. 59 Issue (10): 1389-1400    DOI: 10.11900/0412.1961.2021.00340
  研究论文 本期目录 | 过刊浏览 |
基于大数据挖掘的连铸结晶器传热独立变化规律
彭治强1,2, 柳前1,2, 郭东伟1,2, 曾子航1,2, 曹江海1,2, 侯自兵1,2()
1.重庆大学 材料科学与工程学院 重庆 400044
2.重庆大学 钒钛冶金及新材料重庆市重点实验室 重庆 400044
Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining
PENG Zhiqiang1,2, LIU Qian1,2, GUO Dongwei1,2, ZENG Zihang1,2, CAO Jianghai1,2, HOU Zibing1,2()
1.College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2.Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing 400044, China
引用本文:

彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
Zhiqiang PENG, Qian LIU, Dongwei GUO, Zihang ZENG, Jianghai CAO, Zibing HOU. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. Acta Metall Sin, 2023, 59(10): 1389-1400.

全文: PDF(2403 KB)   HTML
摘要: 

针对连铸板坯表面纵裂纹,基于连铸生产过程参数,利用大数据挖掘方法,提出了一种获取现场不同参数对结晶器传热单独影响的新方法,即生产参数独立影响(IPI)法。IPI方法包含数据预处理、交叉相关程度计算、主要相关参数检验、数据筛选和独立影响分析等5个环节,以实现从交互相关的连铸参数中找到参数的主要相关参数,从而分析各连铸参数对结晶器传热的独立影响规律。结果表明,除拉速、过热度、板坯宽度、结晶器锥度、结晶器总水流量等常规影响因素外,结晶器振动频率、结晶器液位、水口插入深度、塞棒位置以及不同位置吹Ar流量等均对结晶器热流有不同程度的影响。塞棒吹Ar流量、塞棒位置和水口插入深度均对结晶器传热有正向促进作用,而水口吹Ar流量、结晶器振动频率、结晶器总水流量主要表现为负向抑制作用。另外,对于水口吹Ar流量和结晶器总水流量而言,存在结晶器热流最大的拐点值,分别为3.5 L/min和8250~8750 L/min。

关键词 结晶器传热连铸纵裂纹低碳钢独立变化规律大数据挖掘    
Abstract

Mold heat transfer has an essential influence on the initial formation of surface longitudinal cracks in slabs, and control over various process parameters in continuous casting is very important for achieving the desired qualified product. A study on the influence of parameters on mold heat transfer helps determine the law of mold heat transfer and realize fine control of the parameters. However, the cross-correlation between continuous casting parameters makes it difficult to identify the independent influence of each parameter on the mold heat flux. Based on the parameters in the production process of continuous casting using big data mining and analytics, a new method for obtaining the independent effect of each parameter on the mold heat transfer is proposed, namely the new method for independent process influence (IPI). The five links included in the IPI method can be calculated in turn: data preprocessing, cross-correlation level calculation, main related parameters testing, data filtering, and independent influence analysis. The results showed that, in addition to the conventional influence of the casting speed, superheat, slab width, mold taper, and total water flow on mold heat flux, the oscillation frequency, mold level, immersion depth of nozzle, stopper position, and argon blowing flow rate at different positions affected mold heat flux to a certain extent. The argon blowing flow rate of the stopper, stopper position, and immersion depth of the nozzle positively influence the mold heat flux. Conversely, the argon blowing flow rate of the nozzle, oscillation frequency, and total water flow rate have a negative influence. In addition, for the argon blowing flow rate in the nozzle and total water flow rate, an inflection point is reached after achieving the maximum values of 3.5 L/min and 8250-8750 L/min, respectively. This research can provide a new reference and basis for the systematic mechanism analysis of the heat transfer process and formation of longitudinal surface cracks in continuous casting and services for the fine control of high-quality steel production on site.

Key wordsmold heat transfer    continuous casting    surface longitudinal crack    low carbon steel    independent change law    big data mining
收稿日期: 2021-08-16     
ZTFLH:  TF701.3  
基金资助:国家自然科学基金项目(52274318)
通讯作者: 侯自兵,houzibing@cqu.edu.cn,主要从事凝固组织与偏析特征及精细化控制研究
Corresponding author: HOU Zibing, associate professor, Tel: 13628489073, E-mail: houzibing@cqu.edu.cn
作者简介: 彭治强,男,1996年生,博士生
图1  生产大数据的独立参数影响(IPI)法计算流程图
图2  各连铸参数数据的分位数-分位数(Q-Q)图
图3  各连铸操作参数Spearman相关系数热图
Continuous castingMain related parameterSample size of
parameterfiltered dataset
Casting speedOscillation frequency, Qstopper, Qnozzle, and immersion depth141
Immersion depthMold level1440
Mold levelImmersion depth1253
Oscillation frequencyCasting speed, Qstopper, position of stopper, immersion depth, and total water flow rate54
Slab widthTotal water flow rate, oscillation frequency, Qshield, and immersion depth1670
Position of stopperQstopper, Qnozzle, immersion depth, and superheat612
QstopperQnozzle, total water flow rate, superheat, Qshield, and casting speed102
QnozzleQstopper, slab width, and superheat417
QshieldQnozzle and total water flow rate1123
SuperheatQnozzle and immersion depth369
Total water flow rateSlab width, Qshield, and superheat2727
Mold taperTotal water flow rate3517
表1  各连铸参数的主要相关参数
qleftqrightqinnerqouterqave
qleft10.8890.8270.6610.923
qright0.88910.8610.7110.943
qinner0.8280.86110.8950.959
qouter0.6610.7110.89510.856
qave0.9230.9430.9590.8561
表2  结晶器各面平均热流Spearman相关系数
图4  拉速与结晶器热流的关系
图5  过热度与结晶器热流的关系
图6  总水流量、板坯宽度、结晶器锥度、水口插入深度、结晶器液位及振动频率与结晶器热流之间的关系
图7  塞棒位置、塞棒吹Ar流量及水口吹Ar流量、保护吹Ar流量与结晶器热流之间的关系
Continuous casting parameterρ|ρ|
Casting speed0.720.72
Superheat0.630.63
Qstopper0.330.33
Qnozzle-0.280.28
Position of stopper0.260.26
Oscillation frequency-0.230.23
Total water flow rate-0.190.19
Immersion depth of nozzle0.150.15
Mold taper-0.090.09
Qshield0.080.08
Slab width-0.060.06
Mold level0.030.03
表3  连铸各参数与结晶器热流Spearman相关系数(按相关系数绝对值大小由高往低排序)
1 Cai K K. Quality Control of Continuous Casting Billet [M]. Beijing: Mechanical Industry Press, 2010: 163
1 蔡开科. 连铸坯质量控制 [M]. 北京: 冶金工业出版社, 2010: 163
2 Liu Y, Wang X D, Sun Y, et al. Research on a new detection method of slab surface crack in mould during continuous casting [J]. Metall. Res. Technol., 2018, 115: 108
doi: 10.1051/metal/2017082
3 Zappulla M L S, Hibbeler L C, Thomas B G. Effect of grade on thermal-mechanical behavior of steel during initial solidification [J]. Metall. Mater. Trans., 2017, 48A: 3777
4 Mills K C. The performance of casting powders and their effect on surface quality [J]. Steelmaking Conf. Proc., 1991, 74: 121
5 Lan P, Nguyen D A, Lee S Y, et al. Heat transfer and solidification microstructure evolution of continuously cast steel by non-steady physical simulation [J]. Met. Mater. Int., 2017, 23: 568
doi: 10.1007/s12540-017-6511-5
6 Wang W L, Long X K, Zhang H H, et al. Mold simulator study of effect of mold oscillation frequency on heat transfer and lubrication of mold flux [J]. ISIJ Int., 2018, 58: 1695
doi: 10.2355/isijinternational.ISIJINT-2018-275
7 Yu H Q, Zhu M Y. Numerical simulation of liquid steel superheat removal in slab continuous casting mold [J]. Acta Metall. Sin., 2009, 45: 476
7 于海岐, 朱苗勇. 板坯连铸结晶器内钢液过热消除过程的数值模拟 [J]. 金属学报, 2009, 45: 476
8 Florio B J, Vynnycky M, Mitchell S L, et al. On the interactive effects of mould taper and superheat on air gaps in continuous casting [J]. Acta Mech., 2017, 228: 233
doi: 10.1007/s00707-016-1717-z
9 Wang Y, Fang Q, Zhang H, et al. Effect of argon blowing rate on multiphase flow and initial solidification in a slab mold [J]. Metall. Mater. Trans., 2020, 51B: 1088
10 Zhang J M, Zhang L, Wang X H, et al. Study of heat flux distribution in continuous casting mold [J]. Acta Metall. Sin., 2003, 39: 1285
10 张炯明, 张 立, 王新华 等. 板坯连铸结晶器热流量分布的研究 [J]. 金属学报, 2003, 39: 1285
11 Jeong H, Hwang J Y, Cho J W. In-depth study of mold heat transfer for the high speed continuous casting process [J]. Met. Mater. Int., 2016, 22: 295
doi: 10.1007/s12540-016-5476-0
12 Jing C L, Luo B G, Tian Z H. Study and practice of high casting speed technology on No.3 slab caster of Shougang Jingtang Steel [J]. Iron Steel, 2014, 49(3): 46
12 景财良, 罗伯钢, 田志红. 首钢京唐3号铸机高拉速工艺研究与实践 [J]. 钢铁, 2014, 49(3): 46
13 Zhao H M, Wang X H, Zhang J M. Factors effecting surface quality of hypo-peritectic steel slab cast at high speed [J]. Iron Steel, 2006, 41(6): 22
13 赵和明, 王新华, 张炯明. 影响高速浇铸亚包晶钢表面质量的因素研究 [J]. 钢铁, 2006, 41(6): 22
14 Cheng C G, Lu H B, Li Y, et al. Mathematical modeling of flow and heat transfer behavior of liquid slag in continuous casting mold with argon blowing [J]. ISIJ Int., 2019, 59: 1266
doi: 10.2355/isijinternational.ISIJINT-2018-832
15 Phull J, Egas J, Barui S, et al. An application of decision Tree-Based twin support vector machines to classify dephosphorization in BOF steelmaking [J]. Metals, 2020, 10: 25
doi: 10.3390/met10010025
16 Wu S W, Yang J, Zhang R H, et al. Prediction of endpoint sulfur content in KR desulfurization based on the hybrid algorithm combining artificial neural network with SAPSO [J]. IEEE Access, 2020, 8: 33778
doi: 10.1109/Access.6287639
17 Liu Y H, Hu Z H, Suo Z G, et al. High-throughput experiments facilitate materials innovation: A review [J]. Sci. China Technol. Sci., 2019, 62: 521
doi: 10.1007/s11431-018-9369-9
18 Tukey J W. A quick compact two sample test to Duckworth's specifications [J]. Technometrics, 1959, 1: 31
19 Wilcoxon F. Individual comparisons by ranking methods [J]. Biomet. Bull., 1945, 1: 80
doi: 10.2307/3001968
20 Sim C H, Gan F F, Chang T C. Outlier labeling with boxplot procedures [J]. J. Am. Stat. Assoc., 2005, 100: 642
doi: 10.1198/016214504000001466
21 Shein W H, Fitrianto A. A comparative study of outliers identification methods in univariate data set [J]. Adv. Sci. Lett., 2017, 23: 1422
doi: 10.1166/asl.2017.8366
22 Schober P, Boer C, Schwarte L A. Correlation coefficients: Appropriate use and interpretation [J]. Anesth. Analg., 2018, 126: 1763
doi: 10.1213/ANE.0000000000002864 pmid: 29481436
23 Stein S, Leng C L, Thornton S, et al. A guided analytics tool for feature selection in steel manufacturing with an application to blast furnace top gas efficiency [J]. Comput. Mater. Sci., 2021, 186: 110053
doi: 10.1016/j.commatsci.2020.110053
24 Konishi J, Militzer M, Samarasekera I V, et al. Modeling the formation of longitudinal facial cracks during continuous casting of hypoperitectic steel [J]. Metall. Mater. Trans., 2002, 33B: 413
25 Wang X D, Yin S H, Kong L W, et al. Effect of carbon content and casting parameters on heat flux of mold for wide-thick slab during concasting process [J]. Spec. Steel, 2014, 35(4): 37
25 王旭东, 尹少华, 孔令伟 等. 碳含量及连铸工艺参数对宽厚板坯结晶器热流的影响 [J]. 特殊钢, 2014, 35(4): 37
26 Sadat M, Gheysari A H, Sadat S. The effects of casting speed on steel continuous casting process [J]. Heat Mass Transfer, 2011, 47: 1601
doi: 10.1007/s00231-011-0822-8
27 Cai K K. Continuous Casting Mold [M]. Beijing: Mechanical Industry Press, 2008: 12
27 蔡开科. 连铸结晶器 [M]. 北京: 冶金工业出版社, 2008: 12
28 Zhang J, Zhang C Q, Wang L, et al. Automatic control of slag line for submerged entry nozzle (SEN) [J]. Metallurgist, 2017, 60: 916
doi: 10.1007/s11015-017-0386-z
29 Gu S P, Wen G H, Guo J L, et al. Effect of shear stress on heat transfer behavior of non-Newtonian mold fluxes for peritectic steels slab casting [J]. ISIJ Int., 2020, 60: 1179
doi: 10.2355/isijinternational.ISIJINT-2019-609
30 De Winter J C F, Gosling S D, Potter J. Comparing the pearson and spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data [J]. Psychol. Methods, 2016, 21: 273
doi: 10.1037/met0000079 pmid: 27213982
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[3] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[4] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[5] 郭中傲, 彭治强, 柳前, 侯自兵. 高碳钢连铸坯大区域C元素分布不均匀度[J]. 金属学报, 2021, 57(12): 1595-1606.
[6] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[7] 蔡来强, 王旭东, 姚曼, 刘宇. 连铸圆坯非均匀传热/凝固行为的无网格计算方法[J]. 金属学报, 2020, 56(8): 1165-1174.
[8] 任忠鸣,雷作胜,李传军,玄伟东,钟云波,李喜. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600.
[9] 李亚强, 刘建华, 邓振强, 仇圣桃, 张佩, 郑桂芸. 15CrMoG钢包晶凝固特征与机制[J]. 金属学报, 2020, 56(10): 1335-1342.
[10] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[11] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[12] 郭军力, 文光华, 符姣姣, 唐萍, 侯自兵, 谷少鹏. 冷却速率对包晶钢凝固过程中包晶转变收缩的影响[J]. 金属学报, 2019, 55(10): 1311-1318.
[13] 侯自兵, 徐瑞, 常毅, 曹江海, 文光华, 唐萍. 高碳钢连铸方坯拉坯方向偏析C元素分布的时间序列波动特征[J]. 金属学报, 2018, 54(6): 851-858.
[14] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
[15] 朱苗勇, 娄文涛, 王卫领. 炼钢与连铸过程数值模拟研究进展[J]. 金属学报, 2018, 54(2): 131-150.