Please wait a minute...
金属学报  2024, Vol. 60 Issue (4): 464-472    DOI: 10.11900/0412.1961.2022.00094
  研究论文 本期目录 | 过刊浏览 |
碳化物特征对GH3536合金冷变形损伤的影响及控制
余华, 李昕, 江河(), 姚志浩, 董建新
北京科技大学 材料科学与工程学院 北京 100083
Effect of Carbide Characteristics on Damage of Cold Deformed GH3536 Alloy and Its Control
YU Hua, LI Xin, JIANG He(), YAO Zhihao, DONG Jianxin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

余华, 李昕, 江河, 姚志浩, 董建新. 碳化物特征对GH3536合金冷变形损伤的影响及控制[J]. 金属学报, 2024, 60(4): 464-472.
Hua YU, Xin LI, He JIANG, Zhihao YAO, Jianxin DONG. Effect of Carbide Characteristics on Damage of Cold Deformed GH3536 Alloy and Its Control[J]. Acta Metall Sin, 2024, 60(4): 464-472.

全文: PDF(2854 KB)   HTML
摘要: 

为了研究碳化物对GH3536合金冷变形损伤的影响并加以控制,通过薄带材的冷轧变形和圆柱试样的压缩变形,观察了碳化物破裂以及基体局部开裂的现象,并结合有限元模拟结果,进一步探讨了碳化物形貌与分布特征对组织损伤的影响。结果表明,当碳化物尺寸较大、形状不规则且呈团聚分布时,其内部应力与破裂倾向较大,而小尺寸圆形碳化物的情况与之相反。碳化物的团聚与条带状分布是引起基体应力和开裂倾向增加的主要原因。热处理结果表明,通过将热处理温度提高到1150℃以上,可以明显改善小尺寸碳化物的团聚和条带状分布特征,但对于10 μm以上的大尺寸碳化物改善效果不明显。

关键词 GH3536合金冷变形热处理碳化物破裂    
Abstract

GH3536 alloy is a solid solution-strengthened superalloy for aero-engines. In general, this alloy is cold rolled into thin strips and used in honeycomb structures in engine sealing systems. During cold deformation of GH3536 alloy, a microstructural damage caused by carbide particles is the focus of attention. Therefore, understanding the influence of carbides on the cold deformation damage of GH3536 alloy is necessary to control such a phenomenon. Carbide cracking and local cracking of the matrix was observed through cold rolling deformation of thin strips and compression deformation of cylindrical specimens. Combined with finite element simulation results, the effect of carbide morphology and distribution characteristics on the microstructural damage was further discussed. Results show that when carbides are larger in size, irregular in shape, and distributed in agglomeration, the internal stress and fracture tendency are larger, which is contrary to small circular carbides. The agglomeration and banded distribution of carbides primarily increase matrix stress and cracking tendency. The heat treatment results show that the agglomeration and banded distribution characteristics of small carbides can be significantly improved by increasing the solution/annealing heat treatment temperature above 1150oC, but the effect is not evident for large carbides above 10 μm.

Key wordsGH3536 alloy    cold deformation    heat treatment    carbide fracture
收稿日期: 2022-03-07     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目(92160201)
通讯作者: 江 河,jianghe@ustb.edu.cn,主要从事变形高温合金研究
Corresponding author: JIANG He, associate professor, Tel: 13811910685, E-mail: jianghe@ustb.edu.cn
作者简介: 余 华,女,1996年生,博士生
图1  SEM照片获取GH3536合金碳化物特征并建立有限元模型
图2  GH3536锻态合金的碳化物SEM像
图3  GH3536合金带材冷轧变形50%至约0.078 mm厚度的碳化物破裂
图4  GH3536合金经1180℃、30 min固溶热处理的室温压缩变形55.6%的碳化物破裂
图5  GH3536合金30%变形量的圆形碳化物及形状不规则碳化物的最大主应力分布
图6  30%变形量的GH3536合金中条带状分布碳化物的最大主应力分布
图7  GH3536合金30%变形量的碳化物周围基体应力/应变分布
图8  GH3536合金碳化物随热处理温度的变化
图9  GH3536合金碳化物面积分数随热处理温度的变化曲线
图10  GH3536合金碳化物的最小外接矩形尺寸随热处理温度的变化
1 Academic Committee of the Superalloys. China Superalloys Handbook: Scroll, Deformed Superalloys, Superalloy Wires for Welding[M]. Beijing: China Quality Inspection Press, Standards Press of China, 2012: 160
1 中国金属学会高温材料分会. 中国高温合金手册: 上卷: 变形高温合金 焊接用高温合金丝[M]. 北京: 中国质检出版社, 中国标准出版社, 2012: 160
2 Kirchhöfer H, Schubert F, Nickel H. Precipitation behavior of Ni-Cr-22 Fe-18 Mo (Hastelloy-X) and Ni-Cr-22 Co-12 Mo (Inconel-617) after isothermal aging[J]. Nucl. Technol., 1984, 66: 139
doi: 10.13182/NT84-A33462
3 Zhao J C, Larsen M, Ravikumar V. Phase precipitation and time-temperature-transformation diagram of Hastelloy X[J]. Mater. Sci. Eng., 2000, A293: 112
4 Kutz M. Mechanical Engineers' Handbook: Materials and Mechanical Design[M]. 3rd Ed., Hoboken: John Wiley & Sons, Inc., 2006: 1161
5 Evans N D, Maziasz P J, Shingledecker J P, et al. Microstructure evolution of alloy 625 foil and sheet during creep at 750oC[J]. Mater. Sci. Eng., 2008, A498: 412
6 Baldan A. Combined effects of thin-section size, grain size and cavities on the high temperature creep fracture properties of a nickel-base superalloy[J]. J. Mater. Sci., 1997, 32: 35
doi: 10.1023/A:1018506628065
7 Baldan A. On the thin-section size dependent creep strength of a single crystal nickel-base superalloy[J]. J. Mater. Sci., 1995, 30: 6288
doi: 10.1007/BF00369679
8 Wilson D J. Relationship of mechanical characteristics and microstructural features to the time-dependent edge notch sensitivity of Inconel 718 sheet[R]. 1971: NASA Report NASA-CR-138772
9 Chen W, Chaturvedi M C. The influence of grain boundary precipitates on creep fracture of Inconel 718[A]. Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh: TMS, 1994: 567
10 Sundararaman M, Mukhopadhyay P, Banerjee S. Carbide precipitation in nickel base superalloys 718 and 625 and their effect on mechanical properties[A]. Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh: TMS, 1997: 367
11 Evans N D, Maziasz P J, Shingledecker J P. Creep-testing foils and sheets of alloy 625 for microturbine recuperators[A]. Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh: TMS, 2005: 721
12 Jagadeesh G V, Setti S G. A review on micromechanical methods for evaluation of mechanical behavior of particulate reinforced metal matrix composites[J]. J. Mater. Sci., 2020, 55: 9848
doi: 10.1007/s10853-020-04715-2
13 Ma S M, Zhuang X C, Wang X M. Particle distribution-dependent micromechanical simulation on mechanical properties and damage behaviors of particle reinforced metal matrix composites[J]. J. Mater. Sci., 2021, 56: 6780
doi: 10.1007/s10853-020-05684-2
14 Nan C W, Clarke D R. The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites[J]. Acta Mater., 1996, 44: 3801
doi: 10.1016/1359-6454(96)00008-0
15 Qing H. The influence of particle shapes on strength and damage properties of metal matrix composites[J]. J. Nanosci. Nanotechnol., 2015, 15: 5741
pmid: 26369147
16 Mishnaevsky Jr L, Derrien K, Baptiste D. Effect of microstructure of particle reinforced composites on the damage evolution: Probabilistic and numerical analysis[J]. Compos. Sci. Technol., 2004, 64: 1805
doi: 10.1016/j.compscitech.2004.01.013
17 Dastgerdi J N, Marquis G, Anbarlooie B, et al. Microstructure-sensitive investigation on the plastic deformation and damage initiation of amorphous particles reinforced composites[J]. Compos. Struct., 2016, 142: 130
doi: 10.1016/j.compstruct.2016.01.075
18 Bergsmo A, Dunne F P E. Competing mechanisms of particle fracture, decohesion and slip-driven fatigue crack nucleation in a PM nickel superalloy[J]. Int. J. Fatigue, 2020, 135: 105573
doi: 10.1016/j.ijfatigue.2020.105573
19 Anderson T L. Fracture Mechanics: Fundamentals and Applications[M]. 4th Ed., Boca Raton: CRC Press, 2017: 229
20 Mishnaevsky Jr L, Lippmann N, Schmauder S. Computational modeling of crack propagation in real microstructures of steels and virtual testing of artificially designed materials[J]. Int. J. Fract., 2003, 120: 581
doi: 10.1023/A:1025524214322
21 Schöllmann M, Richard H A, Kullmer G, et al. A new criterion for the prediction of crack development in multiaxially loaded structures[J]. Int. J. Fract., 2002, 117: 129
doi: 10.1023/A:1020980311611
22 Richard H A, Kuna M. Theoretical and experimental study of superimposed fracture modes I, II and III[J]. Eng. Fract. Mech., 1990, 35: 949
doi: 10.1016/0013-7944(90)90124-Y
23 Onaka S, Kato M. Effects of elastic modulus, shape and volume fraction of an elastically inhomogeneous second phase on stress states in a loaded composite[J]. Mater. Trans., JIM, 1999, 40: 1102
24 Davis J R. ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys[M]. ASM International, 2000: 53
25 Yu Q B, Liu X H, Zhao X P. Microstructural Morphology and Analysis of TMCP Steels[M]. Beijing: Science Press, 2010: 256
25 于庆波, 刘相华, 赵贤平. 控轧控冷钢的显微组织形貌及分析[M]. 北京: 科学出版社, 2010: 256
26 Meyer L, translated by Zhao H. Optimierung der Werkstoffeigenschaften bei der Herstellung von Warmband und Kaltband aus Stahl[M]. Beijing: Metallurgical Industry Press, 1996: 89
26 鲁茨·迈耶著, 赵 辉 译. 带钢轧制过程中材料性能的优化[M]. 北京: 冶金工业出版社, 1996: 89
[1] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[2] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[3] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[4] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[5] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[6] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[7] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[8] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.
[9] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[10] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[11] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[12] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
[13] 王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.
[14] 王悦, 王继杰, 张昊, 赵泓博, 倪丁瑞, 肖伯律, 马宗义. 热处理对激光选区熔化AlSi10Mg合金显微组织及力学性能的影响[J]. 金属学报, 2021, 57(5): 613-622.
[15] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.