Please wait a minute...
金属学报  2022, Vol. 58 Issue (8): 1024-1034    DOI: 10.11900/0412.1961.2021.00024
  研究论文 本期目录 | 过刊浏览 |
冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响
李闪闪1,2, 陈云1(), 巩桐兆1,2, 陈星秋1, 傅排先1, 李殿中1
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2.中国科学技术大学 材料科学与工程学院 沈阳 110016
Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel
LI Shanshan1,2, CHEN Yun1(), GONG Tongzhao1,2, CHEN Xingqiu1, FU Paixian1, LI Dianzhong1
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
Shanshan LI, Yun CHEN, Tongzhao GONG, Xingqiu CHEN, Paixian FU, Dianzhong LI. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. Acta Metall Sin, 2022, 58(8): 1024-1034.

全文: PDF(4117 KB)   HTML
摘要: 

为明确液析碳化物的形成与工艺的关系和产生机制,以及受添加稀土元素的影响,对添加稀土元素和未添加稀土元素的GCr15系连铸高碳铬轴承钢进行了不同冷却速率下的重熔凝固实验。试样凝固完毕后,采用OM、EPMA、SEM和XRD等表征和分析了铸态轴承钢中的液析碳化物的数量、面积、平均尺寸和化学成分等与冷却速率的关系,以及添加稀土元素的影响效果。结果表明,GCr15系轴承钢液析碳化物的类型为M3C型渗碳体,Cr含量较高,可达15% (质量分数)以上,并且随冷速增加,其数量明显增加。但是,当冷却速率较快时,初生奥氏体细化,同时因形成碳化物所需的C、Cr元素扩散时间减少,碳化物尺寸显著减小,且分布更加弥散均匀。通过对比分析添加稀土元素对凝固组织的影响,发现稀土元素有细化奥氏体进而细化液析碳化物的作用。根据不同冷速下液析碳化物的特点,提出了高碳铬轴承钢凝固过程一次碳化物形成的动力学机制。

关键词 轴承钢重熔凝固液析碳化物冷却速率    
Abstract

Bearing is one of the most technologically important engineering components in machines. With the development of several advanced steel-refining technologies to suppress the detrimental effect of nonmetallic inclusions on the mechanical properties of materials, the impact of carbides on the service life of bearings has gradually highlighted. The carbides have become a key factor in determining the performance of a bearing, particularly for primary carbides formed during the solidification of high carbon-chromium bearing steel. Therefore, exploring the formation mechanism of primary carbides and their control strategies is vital to improve the manufacturing process of bearing steel as well as the service life and reliability of bearings. To clarify the formation mechanism of primary carbides and the effects of the processing technique, as well as the addition of rare earth elements, a modified type of GCr15 high carbon-chromium bearing steel with and without rare earth elements was remelted and solidified at different cooling rates. After solidification, the quantity, area, average size, and chemical composition of the primary carbide in the as-cast bearing steel were characterized and analyzed via OM, EPMA, SEM, and XRD. The results show that the type of carbide in GCr15 series bearing steel is M3C cementite with high Cr content (more than 15%, mass fraction). The nucleation rate of M3C cementite increased with the increase in the cooling rate; thus, the number of carbides increased considerably. However, at very high cooling rates, the primary austenite was refined and the diffusion time of C and Cr elements required to form carbides declined; therefore, the size of carbides was reduced significantly, resulting in more uniform dispersion of the carbides. Moreover, the addition of rare earth elements could refine the primary austenite, and subsequently, refine the carbide to some extent. Considering the properties of the primary carbides at different cooling rates, the kinetic formation mechanism for the primary carbide in high carbon-chromium bearing steel during solidification is proposed.

Key wordsbearing steel    remelting and solidification    primary carbide    cooling rate
收稿日期: 2021-01-14     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目(52031013);中国科学院战略性先导科技专项子课题项目(XDC04040202);中国科学院青年创新促进会项目
作者简介: 李闪闪,女,1994年生,硕士生
SteelCCrSiMnMoPSNiCuLaCeFe
GCr15SiMn0.991.550.480.99< 0.050.0130.0010.06< 0.05--Bal.
GCr15SiMn(RE)0.991.550.500.98< 0.050.0130.0010.08< 0.050.00050.001Bal.
表1  未添加稀土元素的GCr15SiMn钢和添加稀土元素的GCr15SiMn(RE)钢的化学成分 (mass fraction / %)
图1  重熔凝固前后GCr15SiMn和GCr15SiMn(RE)钢的圆柱试样,以及所使用的刚玉坩埚
图2  采用Thermo-Calc软件计算的GCr15SiMn钢的伪二元相图
图3  试样熔化和凝固实验过程中的加热和冷却曲线
图4  直径为600 mm的GCr15SiMn连铸轴承钢锭中心区域出现的典型液析碳化物形貌的OM像
图5  不同冷速下GCr15SiMn钢铸态显微组织的OM像
图6  不同冷速下GCr15SiMn(RE)钢铸态显微组织的OM像
图7  冷速对块状孤立液析碳化物的影响
SteelCooling rate / (oC·min-1)˃ 40 μm30-40 μm20-30 μm10-20 μm˂ 10 μm
GCr15SiMn0.17500250
11030302010
104.3513.0421.7434.7826.09
400010.8132.4356.76
1900001.9498.06
GCr15SiMn(RE)0.10066.3733.330
1022.2244.4533.330
10008.3383.348.33
4004.3517.3921.7456.52
1900006.9393.07
表2  不同冷速下孤立液析碳化物平均直径分布 (quantity percentage / %)
Steel0-10 μm10-20 μm20-30 μm30-40 μm40-50 μm50-60 μm60-70 μm70-80 μm˃ 80 μm
GCr15SiMn62495624931191810
GCr15SiMn(RE)151701233341---
表3  冷速为1℃/min的GCr15SiMn和GCr15SiMn(RE)试样凝固的奥氏体晶粒尺寸分布(数量)
图8  冷速对共晶碳化物面积的影响
图9  电解萃取GCr15SiMn和GCr15SiMn(RE)连铸轴承钢锭液析碳化物颗粒的SEM像和XRD谱
图10  冷速对液析碳化物化学组成的影响
图11  液析碳化物的形成过程示意图
1 Zhou W S. Study on the control of the uniformity of carbide and its mechanism in GCr15SiMn bearing steel [D]. Xi'an: Xi'an University of Architecture and Technology, 2015
1 周旺松. GCr15SiMn钢碳化物均匀性控制及其机理研究 [D]. 西安: 西安建筑科技大学, 2015
2 Li Z Q. Experiment and simulation research on the structure evolution of GCr15 steel during heating process [D]. Beijing: University of Science and Technology Beijing, 2018
2 李志强. GCr15轴承钢加热过程中组织演变规律的实验和模拟 [D]. 北京: 北京科技大学, 2018
3 Yan W K. Microstructure evolution and control technology of high-purity of GCr15 bearing steel [D]. Kunming: Kunming University of Science and Technology, 2010
3 闫文凯. 高纯净GCr15轴承钢组织演变与控制工艺的研究 [D]. 昆明: 昆明理工大学, 2010
4 Kawakami K, Taniguchi T, Nakashima K. Generation mechanisms of non-metallic inclusions in high-cleanliness steel [J]. Tetsu Hagané, 2007, 93(12): 743
4 川上 潔, 谷口 剛, 中島 邦彦. 高清浄度鋼における介在物の生成起源 [J]. 鉄と 鋼, 2007, 93(12): 743
5 Zhou D W, Peng P, Xu S H, et al. Research and application of rare earth in steel [J]. Res. Stud. Foundry Equip., 2004, (3): 35
5 周惦武, 彭 平, 徐少华 等. 稀土元素在钢中的应用与研究 [J]. 铸造设备研究, 2004, (3): 35
6 Zheng F Z. Mechanism study on improvement of inclusions and liquation carbide in GCr15 bearing steels by RE-Mg treatment [D]. Ma'anshan: Anhui University of Technology, 2018
6 郑福舟. 稀土-镁处理改善GCr15轴承钢夹杂物及液析碳化物规律研究 [D]. 马鞍山: 安徽工业大学, 2018
7 Li C L. New development of research on rare earth application in steels [J]. Chin. Rare Earths, 2013, 34(3): 78
7 李春龙. 稀土在钢中应用与研究新进展 [J]. 稀土, 2013, 34(3): 78
8 Zhang X F, Tang J P, Han C P, et al. Analysis of the role of rare earth in steel and the present situation of industrial production [J]. Chin. Rare Earth, 2021, 42: 117
8 张晓峰, 唐建平, 韩春鹏 等. 稀土在钢中作用及工业化生产现状浅析 [J]. 稀土, 2021, 42: 117
9 Li Z K, Lei J Z, Xu H F, et al. Current status and development trend of bearing steel in China and abroad [J]. J. Iron Steel Res., 2016, 28(3): 1
doi: 10.1007/s42243-020-00463-4
9 李昭昆, 雷建中, 徐海峰 等. 国内外轴承钢的现状与发展趋势 [J]. 钢铁研究学报, 2016, 28(3): 1
10 Kim K, Oh K, Lee J, et al. Quantitative relationship between degree of center segregation and large carbide size in continuously cast bloom of high carbon chromium bearing steel [J]. J. ASTM Int., 2010, 7: 102533
doi: 10.1520/JAI102533
11 Kim K H, Park S D, Bae C M. New approach to the soaking condition of 100Cr6 high-carbon chromium bearing steel [J]. Met. Mater. Int., 2014, 20: 207
doi: 10.1007/s12540-014-2003-z
12 Research Institute of Tayeh Steel Works. An investigation of certain high carbon chromium bearing steel ingots [J]. Acta Metall. Sin., 1977, 13: 109
12 大冶钢厂钢铁研究所. 高碳铬轴承钢钢锭解剖 [J]. 金属学报, 1977, 13: 109
13 Yu M Q. Methods and ways to improve carbide in continuously cast bearing steel in developed countries [J]. J. Shanghai Iron Steel Res., 2006, (1): 3
13 虞明全. 发达国家改善连铸轴承钢碳化物的方法和途径 [J]. 上海钢研, 2006, (1): 3
14 Kim K H, Bae C M. Reduction of segregation during casting of 100Cr6 bearing steel by cerium inoculation [J]. Met. Mater. Int., 2013, 19: 371
doi: 10.1007/s12540-013-3001-2
15 Zuo Y, Mi Z L, Li Z C, et al. Influence of heating process on dissolve behavior of liquation carbide in casting bearing steel [J]. Trans. Mater. Heat Treat., 2016, 37(2): 146
15 左 毅, 米振莉, 李志超 等. 加热工艺对轴承钢连铸坯液析碳化物溶解行为的影响 [J]. 材料热处理学报, 2016, 37(2): 146
16 Opiela M, Grajcar A. Modification of non-metallic inclusions by rare-earth elements in microalloyed steels [J]. Arch. Foundry Eng., 2012, 12: 129
17 Li X, Jiang Z H, Geng X, et al. Evolution mechanism of inclusions in H13 steel with rare earth magnesium alloy addition [J]. ISIJ Int., 2019, 59: 1552
doi: 10.2355/isijinternational.ISIJINT-2019-094
18 van der Eijk C, Grong Ø, Haakonsen F, et al. Progress in the development and use of grain refiner based on cerium sulfide or titanium compound for carbon steel [J]. ISIJ Int., 2009, 49: 1046
doi: 10.2355/isijinternational.49.1046
19 Yang C Y, Luan Y K, Li D Z, et al. Effect of RE on inclusions in highly clean bearing steel [J]. Steelmaking, 2016, 32(4): 54
19 杨超云, 栾义坤, 李殿中 等. 稀土元素对高洁净度轴承钢中夹杂物的影响研究 [J]. 炼钢, 2016, 32(4): 54
20 Yang C Y, Zhang Q, Li H, et al. Analysis on modification behavior of rare earth to inclusions in highly clean bearing steel [J]. China Metall., 2020, 30(9): 45
20 杨超云, 庄 权, 刘 航 等. 稀土变质高洁净轴承钢中夹杂物的行为分析 [J]. 中国冶金, 2020, 30(9): 45
21 Liotti E, Arteta C, Zisserman A, et al. Crystal nucleation in metallic alloys using X-ray radiography and machine learning [J]. Sci. Adv., 2018, 4: eaar4004
doi: 10.1126/sciadv.aar4004
22 Bhadeshia H K D H. Steels for bearings [J]. Prog. Mater. Sci., 2012, 57: 268
doi: 10.1016/j.pmatsci.2011.06.002
23 Blinov V M, Doronin I V, Antoschenkov A E, et al. Deformability of shKh15 steel during cold plastic deformation [J]. Russ. Metall., 2007, 2007: 140
doi: 10.1134/S0036029507020097
24 Antipov V I, Vinogradov L V, Lazarev E M, et al. Increasing the hardness of shKh15 steel in its products [J]. Russ. Metall., 2009, 2009: 334
doi: 10.1134/S0036029509040090
25 Kiessling R, Beckström S. Electron probe X-ray microanalysis [J]. Jernkontorets Ann., 1961, 145: 255
26 Sobolev A, Mirzoev A. Ab initio studies of the short-range atomic structure of liquid iron-carbon alloys [J]. J. Mol. Liq., 2013, 179: 12
doi: 10.1016/j.molliq.2012.11.019
27 Tian Q B. Effect of rare earth on isothermal transformation kinetics in high strength-toughness tool steel [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 392: 022029
[1] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.
[4] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[5] 俞峰,陈兴品,徐海峰,董瀚,翁宇庆,曹文全. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向[J]. 金属学报, 2020, 56(4): 513-522.
[6] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[7] 李亚强, 刘建华, 邓振强, 仇圣桃, 张佩, 郑桂芸. 15CrMoG钢包晶凝固特征与机制[J]. 金属学报, 2020, 56(10): 1335-1342.
[8] 郭军力, 文光华, 符姣姣, 唐萍, 侯自兵, 谷少鹏. 冷却速率对包晶钢凝固过程中包晶转变收缩的影响[J]. 金属学报, 2019, 55(10): 1311-1318.
[9] 侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
[10] 张可, 李昭东, 隋凤利, 朱正海, 章小峰, 孙新军, 黄贞益, 雍岐龙. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54(1): 31-38.
[11] 谷倩倩, 阮莹, 朱海哲, 闫娜. 冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响[J]. 金属学报, 2017, 53(6): 641-647.
[12] 胡小锋,杜瑜宾,闫德胜,戎利建. Cu的析出及其对FeCrMoCu合金阻尼性能和力学性能的影响[J]. 金属学报, 2017, 53(5): 601-608.
[13] 刘少军, 杨光昱, 介万奇. Mg-Zn-Gd三元铸造镁合金的自由凝固路径选择*[J]. 金属学报, 2015, 51(5): 580-586.
[14] 牟娟,王东梅,王沿东. 冷却速率和高径比对钛基非晶复合材料力学性能的影响*[J]. 金属学报, 2015, 51(12): 1435-1440.
[15] 徐洋, 孙明雪, 周砚磊, 刘振宇. (Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响[J]. 金属学报, 2015, 51(1): 31-39.