Please wait a minute...
金属学报  2018, Vol. 54 Issue (1): 65-75    DOI: 10.11900/0412.1961.2017.00142
  本期目录 | 过刊浏览 |
碳钢在模拟海洋工业大气环境中初期腐蚀行为研究
郭明晓1,2, 潘晨1(), 王振尧1, 韩薇1
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
A Study on the Initial Corrosion Behavior of Carbon Steel Exposed to a Simulated Coastal-Industrial Atmosphere
Mingxiao GUO1,2, Chen PAN1(), Zhenyao WANG1, Wei HAN1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

郭明晓, 潘晨, 王振尧, 韩薇. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究[J]. 金属学报, 2018, 54(1): 65-75.
Mingxiao GUO, Chen PAN, Zhenyao WANG, Wei HAN. A Study on the Initial Corrosion Behavior of Carbon Steel Exposed to a Simulated Coastal-Industrial Atmosphere[J]. Acta Metall Sin, 2018, 54(1): 65-75.

全文: PDF(1234 KB)   HTML
摘要: 

采用失重分析、X射线衍射分析、扫描电镜分析及电化学测试分析方法对Q235碳钢在模拟海洋工业大气环境中的初期腐蚀历程和机理开展深入研究,并着重探究了不同比例SO2和Cl-的协同效应对碳钢初期腐蚀行为机制的影响。结果表明,Q235碳钢在模拟海洋工业大气环境中的初期腐蚀呈现由加速过程向减速过程转化的特点,且加速过程的腐蚀动力学仍遵循幂函数规律D=Atn;腐蚀24 h后,腐蚀产物呈现双层结构,即疏松的外层和相对致密的内层。SO2和Cl-的协同效应会加速碳钢的腐蚀,但二者比例的变化对碳钢腐蚀失重影响并不明显,也没有改变腐蚀产物成分,SO2促使碳钢腐蚀形态趋向于均匀腐蚀。

关键词 碳钢大气腐蚀协同作用    
Abstract

Carbon steels as common structural material have been widely used for basic facilities with the development of the city. In these service environments, carbon steel would inevitably encounter the atmospheric corrosion. Especially, the corrosion of carbon steels exposed to coastal-industrial atmosphere is very outstanding. However, the initial corrosion mechanism of carbon steel subjected to coastal-industrial environment still need to be clarified, which would be vital for predicating the subsequent corrosion process. In addition, although many scholars studied the synergism of SO2 and Cl-, which obviously accelerates the corrosion of steel and reduces its service life, there is few research about the effect of the synergism of SO2 and Cl- (in different proportion) on the early corrosion behavior of the carbon steel. Therefore, it is of great importance to investigate the initial corrosion mechanism of carbon steel and the effect of the synergism of SO2 and Cl- (in different proportion) in the coastal-industrial atmosphere. In present work, the initial corrosion behavior of Q235 carbon steel exposed to a simulated coastal-industrial atmosphere has been studied by weight loss, XRD, SEM and electrochemical measurements. Also, the effect of the synergism of SO2 and Cl- (in different proportion) on the early corrosion behavior of Q235 car bon steel has been investigated. The results indicate that the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere presented a transition from corrosion acceleration to deceleration, and the kinetics of accelerated corrosion process followed the empirical equation D=Atn. A double-layered corrosion product was formed on the surface of carbon steel after 24 h: the loose outer layer and relative dense inner layer; the synergistic effect between SO2 and Cl- accelerated the corrosion of carbon steel. However, the change in the ratio of SO2 and Cl- had no significant effect on the corrosion loss of carbon steel, and had not changed the composition of corrosion products formed on carbon steel surface. SO2 caused the corrosion morphology of carbon steel to tend to uniform corrosion.

Key wordscarbon steel    atmospheric corrosion    synergism
收稿日期: 2017-04-20     
ZTFLH:  TG172.3  
基金资助:基金项目 国家自然科学基金项目Nos.51601199、51671197和51401222
作者简介:

作者简介 郭明晓,女,1992年生,硕士生

图1  Q235碳钢在模拟海洋工业大气环境中平均腐蚀速率随时间的变化
图2  Q235碳钢在模拟海洋工业大气环境下的初期腐蚀失重随时间的变化
图3  Q235碳钢不同腐蚀时间内锈层成分的XRD谱
图4  Q235 碳钢锈层在不同腐蚀时间的表面形貌
图5  Q235 碳钢锈层在不同腐蚀时间的截面形貌
图6  Q235碳钢不同腐蚀时间的动电位极化曲线
图7  Q235碳钢带锈试样腐蚀电流密度随腐蚀时间的变化
图8  Q235碳钢在不同腐蚀介质中腐蚀120 h后的腐蚀深度
图9  Q235碳钢在不同腐蚀介质中腐蚀后的XRD谱
图10  Q235碳钢在不同腐蚀介质中腐蚀120 h后的截面形貌
图11  Q235碳钢在不同腐蚀介质中腐蚀120 h后去除腐蚀产物后的表面形貌
图12  Q235碳钢在不同腐蚀介质中腐蚀120 h后的极化曲线
图13  Q235碳钢在不同腐蚀介质中腐蚀120 h后的腐蚀电流密度
[1] Yu Q C, Wang Z Y, Wang C.Corrosion behaviors of low alloy steel and carbon steel deposited with NaCl and NaHSO3 under dry/humid alternative condition[J]. Acta Metall. Sin., 2010, 46: 1133(于全成, 王振尧, 汪川. 表面沉积NaCl和NaHSO3的低合金钢和碳钢在干湿交替条件下的腐蚀行为[J]. 金属学报, 2010, 46: 1133)
[2] Leygraf C, Graedel T,translated by Han E-H. Atmospheric Corrosion [M]. Beijing: Chemical Industry Press, 2005: 121(Leygraf C,Graedel T著, 韩恩厚译. 大气腐蚀 [M]. 北京: 化学工业出版社, 2005: 121)
[3] Wang Z Y, Yu G C, Han W.A survey of the atmospheric corrosiveness of natural environments in China[J]. Corros. Prot., 2003, 24: 323(王振尧, 于国才, 韩薇. 我国自然环境大气腐蚀性调查[J]. 腐蚀与防护, 2003, 24: 323)
[4] Wang S T, Yang S W, Gao K W, et al.Corrosion behavior and corrosion products of a low-alloy weathering steel in Qingdao and Wanning[J]. Int. J. Miner. Metall. Mater., 2009, 16: 58
[5] Wan Y, Yan C W, Cao C N.Atmospheric corrosion of A3 steel deposited with different salts[J]. Acta Phys.-Chim. Sin., 2004, 20: 659(万晔, 严川伟, 曹楚南. 可溶盐沉积对碳钢大气腐蚀的影响[J]. 物理化学学报, 2004, 20: 659)
[6] Ma Y T, Li Y, Wang F H.Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corros. Sci., 2009, 51: 997
[7] Wang Z Y, Yuan Q C, Wang C, et al.Corrosion behaviors of steels in marine atmospheric environment with SO2 pollution[J]. Chin. Sci. Bull., 2012, 57: 2991(王振尧, 于全成, 汪川等. 在含硫污染的海洋大气环境中核电用钢的腐蚀行为[J]. 科学通报, 2012, 57: 2991)
[8] Kucera V, Knotkova D, Gullman J, et al. Corrosion of structural metals in atmospheres with different corrosivity at 8 year's exposure in Sweden and Czechoslovakia [J]. Key Eng. Mater., 1988, 20-28: 167
[9] Liang C F, Hou W T.Sixteen-year atmospheric corrosion exposure study of steels[J]. J. Chin. Soc. Corros. Prot., 2005, 25: 1(梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究[J]. 中国腐蚀与防护学报, 2005, 25: 1)
[10] Cai J P, Zheng Y P, Liu S R.Synergistic effect of chloride and sulphur-bearing pollutant in atmospheric corrosion of mild steel[J]. J. Chin. Soc. Corros. Prot., 1996, 16: 303(蔡健平, 郑逸苹, 刘寿荣. 氯化物、硫污染物对碳钢大气腐蚀的协同作用[J]. 中国腐蚀与防护学报, 1996, 16: 303)
[11] Qu Q, Yan C W, Zhang L, et al.Synergism of NaCl and SO2 in the initial atmospheric corrosion of A3 steel[J]. Acta Metall. Sin., 2002, 38: 1062(屈庆, 严川伟, 张蕾等. NaCl和SO2在A3钢初期大气腐蚀中的协同效应[J]. 金属学报, 2002, 38: 1062)
[12] Nishimura T, Katayama H, Noda K, et al.Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions[J]. Corrosion, 2000, 56: 935
[13] Lyon S B, Thompson G E, Johnson J B, et al.Accelerated atmospheric corrosion testing using a cyclic wet/dry exposure test: Aluminum, galvanized steel, and steel[J]. Corrosion, 1987, 43: 719
[14] Dunn D S, Bogart M B, Brossia C S, et al.Corrosion of iron under alternating wet and dry conditions[J]. Corrosion, 2000, 56: 470
[15] Pan C, Han W, Wang Z Y, et al.Evolution of initial atmospheric corrosion of carbon steel in an industrial atmosphere[J]. J. Mater. Eng. Perform., 2016, 25(12): 1
[16] Yamashita M, Konishi H, Kozakura T, et al.In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays[J]. Corros. Sci., 2005, 47: 2492
[17] Antony H, Perrin S, Dillmann P, et al.Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artefacts[J]. Electrochim. Acta, 2007, 52: 7754
[18] Hao L, Zhang S X, Dong J H, et al.Rusting evolution of MnCuP weathering steel submitted to simulated industrial atmospheric corrosion[J]. Metall. Mater. Trans., 2012, 43A: 1724
[19] Hao L.Rusting evolution and anti-corrosion mechanism of MnCu-P/Mo weathering steels [D]. Shenyang: Graduate University of Chinese Academy of Sciences, 2011(郝龙. MnCu-P/Mo耐候钢的锈蚀演化规律与耐蚀机理 [D]. 沈阳: 中国科学院研究生院, 2011)
[20] Li Q X, Wang Z Y, Han W, et al.Analysis on the corrosion rust of carbon steel exposed to Salt Lake area for 25 months[J]. Acta Phys.-Chim. Sin., 2008, 24: 1459(李巧霞, 王振尧, 韩薇等. 盐湖地区暴露25个月的碳钢表面锈层分析[J]. 物理化学学报, 2008, 24: 1459)
[21] Tian Z Q, Wang C B, Kong X D, et al.Effect of rust layer on corrosion resistance of hull steel[J]. Equip. Environ. Eng., 2012, 9(3): 66(田志强, 王崇碧, 孔小东等. 锈层对船体钢耐腐蚀性能影响研究[J]. 装备环境工程, 2012, 9(3): 66)
[22] Bai Y G, Tian N, Liu C M, et al.Study on the weather resistance and corrosion process of 09CuPTiRE steel[J]. J. Mater. Metall., 2003, 2: 63(白玉光, 田妮, 刘春明等. 09CuPTiRE钢耐候性能及腐蚀过程研究[J]. 材料与冶金学报, 2003, 2: 63)
[23] Hao L, Zhang S X, Dong J H, et al.A study of the evolution of rust on Mo-Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion[J]. Corros. Sci., 2012, 54: 244
[24] Svensson J E, Johansson L G.A laboratory study of the initial stages of the atmospheric corrosion of zinc in the presence of NaCl; Influence of SO2 and NO2[J]. Corros. Sci., 1993, 24: 721
[25] Xiao K, Dong C F, Li X G, et al.Effect of deposition of NaCl on the initial atmospheric corrosion of Q235[J]. J. Chin. Soc. Corros. Prot., 2006, 26: 26(肖葵, 董超芳, 李晓刚等. NaCl颗粒沉积对Q235钢早期大气腐蚀的影响[J]. 中国腐蚀与防护学报, 2006, 26: 26)
[26] Zhang X Y, Cai J P, Ma Y J, et al.Analysis on atmospheric corrosion of weathering and carbon steels[J]. Corros. Sci. Prot. Technol., 2004, 16: 389(张晓云, 蔡健平, 马颐军等. 耐候钢和碳钢大气腐蚀规律分析[J]. 腐蚀科学与防护技术, 2004, 16: 389)
[27] Mendoza A R, Corvo F.Outdoor and indoor atmospheric corrosion of carbon steel[J]. Corros. Sci., 1999, 41: 75
[28] Singh D D N, Yadav S, Saha J K. Role of climatic conditions on corrosion characteristics of structural steels[J]. Corros. Sci., 2008, 50: 93
[29] Dawson J L, Ferreira M G S. Crevice corrosion on 316 stainless steel in 3% sodium chloride solution[J]. Corros. Sci., 1986, 26: 1027
[30] Weissenrieder J, Leygraf C.In situ studies of filiform corrosion of iron[J]. J. Electrochem. Soc., 2004, 151: B165
[31] Wang J H, Wei F I, Chang Y S, et al.The corrosion mechanisms of carbon steel and weathering steel in SO2 polluted atmospheres[J]. Mater. Chem. Phys., 1997, 47: 1
[32] Misawa T, Hashimoto K, Shimodaira S.The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature[J]. Corros. Sci., 1974, 14: 131
[33] Evans U R,Taylor C A J. Mechanism of atmospheric rusting[J]. Corros. Sci., 1972, 12: 227
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[3] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[4] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[5] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[6] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[7] 刘雨薇, 顾天真, 王振尧, 汪川, 曹公望. Q235Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为[J]. 金属学报, 2022, 58(12): 1623-1632.
[8] 黄松鹏, 彭灿, 曹公望, 王振尧. BTA保护的白铜在模拟工业大气环境中的腐蚀行为[J]. 金属学报, 2021, 57(3): 317-326.
[9] 郭中傲, 彭治强, 柳前, 侯自兵. 高碳钢连铸坯大区域C元素分布不均匀度[J]. 金属学报, 2021, 57(12): 1595-1606.
[10] 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9): 1247-1254.
[11] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
[12] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[13] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[14] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[15] 陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.