Please wait a minute...
金属学报  2013, Vol. 49 Issue (10): 1153-1159    DOI: 10.3724/SP.J.1037.2013.00159
  论文 本期目录 | 过刊浏览 |
一种低碳Mn-B系超高强度钢板热成形后的氢致延迟断裂行为
张永健,惠卫军,董瀚
钢铁研究总院先进钢铁材料技术国家工程研究中心, 北京 100081
HYDROGEN INDUCED DELAYED FRACTURE BEHAVIOR OF A LOW-CARBON Mn-B TYPE ULTRA-HIGH STRENGTH STEEL SHEET AFTER HOT STAMPING
ZHANG Yongjian, HUI Weijun, DONG Han
National Engineering Research Center of Advanced Steel Technology, Central Iron and Steel Research Institute, Beijing 100081
引用本文:

张永健,惠卫军,董瀚. 一种低碳Mn-B系超高强度钢板热成形后的氢致延迟断裂行为[J]. 金属学报, 2013, 49(10): 1153-1159.
ZHANG Yongjian, HUI Weijun, DONG Han. HYDROGEN INDUCED DELAYED FRACTURE BEHAVIOR OF A LOW-CARBON Mn-B TYPE ULTRA-HIGH STRENGTH STEEL SHEET AFTER HOT STAMPING[J]. Acta Metall Sin, 2013, 49(10): 1153-1159.

全文: PDF(2212 KB)  
摘要: 

采用恒载荷延迟断裂、氢热分析(TDS)等实验方法,研究了一种低碳Mn-B系超高强度热成形钢板在热成形态和常规淬火回火态的氢致延迟断裂行为.结果表明, 经热成形后, 试样缺口临界应力和断裂寿命均高于常规淬火态,并达到常规淬火态+100℃回火试样的水平. 热成形试样经200℃回火处理后,具有更高的缺口临界应力和断裂寿命. SEM观察发现, 在外加应力和腐蚀液的作用下,热成形试样裂纹源区的断裂机制由常规淬火试样的沿晶+穿晶准解理的混合断裂变为穿晶准解理+少量沿晶的混合断裂.TDS实验结果表明, 在临界应力作用下, 在腐蚀液中加载100 h后,试样中的H含量均明显提高. 由于试样在热成形过程中发生较高程度的自回火,导致经应力腐蚀后, 试样在断裂过程中能承受的H量高于淬火态试样和常规淬火态+100℃回火试样,使试样具有更高的延迟断裂抗力. 因此, 经热成形处理后, 试样具有良好的耐延迟断裂性能,且回火处理能使试样的耐延迟断裂性能得到进一步提高.

关键词 低碳Mn-B钢超高强度钢板热成形氢致延迟断裂氢热分析    
Abstract

In consideration of the light weight and the impact safety of cars, in recent years, hot stamping has been increasingly applied to the manufacture of car parts, which has driven forward the increasing use of ultra-high strength steel sheet in the automobile industry. However, when the tensile strength of steel is more than about 1200 MPa, the steel sheet is very susceptible to hydrogen induced delayed fracture. Up to now, some research has been carried out on delayed fracture behavior of both high strength and ultra-high strength steel sheet. However, the delayed fracture behavior of a low-carbon Mn-B type steel sheet widely used for hot stamping has not been paid enough attention and fully studied. There are also a scarcity of reports on hydrogen induced delayed fracture behavior of this steel sheet after hot stamping. With the development of the hot stamping, the evaluation of delayed fracture behavior of ultra-high strength steel sheet for hot stamping, especially the delayed fracture behavior of steel sheet after hot stamping has become very urgent. For these reasons, hydrogen induced delayed fracture behavior of a low-carbon Mn-B type ultra-high strength hot stamping steel sheet at both the hot stamped status and the common quenched and tempered status was studied by means of constant load delayed fracture test and hydrogen thermal desorption spectrometry (TDS) analysis. The results show that both the critical delayed fracture stress σc and delayed fracture life of the steel sheet after hot stamping process are higher than as-quenched sample, and it even matches the level of the quenched +100℃ tempered sample. Moreover, the σc of the steel sheet could be further improved by tempering at 200℃. The delayed fracture surface observed by SEM shows that, under the effect of applied stress and corrosive liquid, the fracture characteristic of the hot stamped sample at crack initiation area changes from brittle intergranular failure in the as-quenched condition to ductile transgranular failure in the hot stamped condition. Furthermore, the TDS result shows that the hydrogen content of steel sheet significantly increases when the steel sheet was applied at critical stress for 100 h in the corrosive liquid. In addition, the hot stamping steel sheet can withstand more hydrogen content than as-quenched sample and quenched +100℃ tempered sample due to the sufficient self tempering. As a result, the hot stamping sample gets a higher critical delayed fracture stress. Therefore, the steel has good delayed fracture resistance after hot stamping, and the delayed fracture resistance of the steel sheet could be further improved by tempering.

Key wordslow-carbon Mn-B steel    ultra-high strength steel sheet    hot stamping    hydrogen induced delayed fracture    hydrogen thermal desorption spectrometry analysis
收稿日期: 2013-04-03     
基金资助:

国家高技术研究发展计划资助项目2009AA033401

作者简介: 张永健, 男, 1982年生, 博士生

[1] Nicolas Y.  Thyssen  Krupp Techforum, 2005; (7): 40

[2] Geiger M, Merklein M, Hoff C.  Adv Mater Res, 2005; 6-8: 795
[3] Altan T.  Stamping J, 2006; (12): 40
[4] Sato M, Utsumi Y, Watanabe K.  Kobelco Technol Rev, 2008; 28: 13
[5] Karbasian H, Tekkaya A E.  J Mater Process Technol, 2010; 210: 2103
[6] Lee S J, Ronevich J A, Krauss G, Matlock D K.  ISIJ Int, 2010; 50: 294
[7] Hein P, Wilsius J.  Steel Res Int, 2008; 79(2): 85
[8] Suehiro M, Maki J, Kusumi K, Ogami M, Miyakoshi T.  Nippon Steel Tech Rep, 2003;(88): 16
[9] Chu W Y.  Hydrogen Damage and Delayed Fracture. Beijing: Metallurgy Industry Press, 2000: 149
(褚武扬. 氢损伤与滞后断裂. 北京: 冶金工业出版社, 2000: 149)
[10] Hui W J, Weng Y Q, Dong H.  High-Strength Fasteners Steels. Beijing: Metallurgy Industry Press, 2009: 32
(惠卫军, 翁宇庆, 董瀚. 高强度紧固件用钢. 北京: 冶金工业出版社, 2009: 32)
[11] Hoji T, Sugimoto K, Mukai Y.  Tetsu Hagane, 2006; 92: 83
(北蓧智彦, 杉本公一, 向井陽一. 鉄と鋼, 2006; 92:83)
[12] Hojo T, Sugimoto K, Mukai Y.  ISIJ Int, 2008; 48: 824
[13] Toji Y, Takagi S, Yoshino M, Hasegawa K, Tanaka Y.  Mater Sci Forum, 2010; 638-642: 3537
[14] Qi J Y, Li Y J, Zhou H J.  Trans Met Heat Treat, 1984; 5(1): 42
(齐靖远, 黎永钧, 周惠久. 金属热处理学报, 1984; 5(1): 42)
[15] Li G F, Dong H, Gao W, Zhao Y J.  J Iron Steel Res, 1996; 8(5): 42
(李桂芬, 董瀚, 高伟, 赵玉君. 钢铁研究学报, 1996; 8(5): 42)
[16] Li G F, Wu R G, Lei T Q.  J Chin Soc Corros Prot, 1991; 11: 27
(李光福, 吴忍田井, 雷廷权. 中国腐蚀与防护学报, 1991; 11: 27)
[17] Chu W Y, Li S Q, Xiao J M, Wang C.  Acta Metall Sin, 1980; 16: 179
(褚武扬, 李世琼, 肖纪美, 王枨. 金属学报, 1980; 16: 179)
[18] Nakatani Y, Higashi T, Yamada K.  Fatigue Fract Eng Mater Struct, 1999; 22: 393
[19] Hui W J, Dong H, Weng Y Q, Wang M Q, Shi J.  Trans Mater Heat Treat, 2006; 27(6): 37
(惠卫军, 董瀚, 翁宇庆, 王毛球, 时捷. 材料热处理学报, 2006; 27(6): 37)
[20] Takahashi T, Yamasaki S.  Kinzoku, 1997; 67: 1011
(高橋稔彦, 山崎眞吾. 金属, 1997; 67: 1011)
[21] Suzuki N, Ishii N, Miyagawa T, Harada H.  Tetsu Hagane, 1993; 79: 227
(鈴木信一, 石井伸幸, 宮川敏夫, 原田宏明. 鉄と鋼, 1993; 79: 227)
[1] 金学军,龚煜,韩先洪,杜浩,丁伟,朱彬,张宜生,冯毅,马鸣图,梁宾,赵岩,李勇,郑菁桦,石朱生. 先进热成形汽车钢制造与使用的研究现状与展望[J]. 金属学报, 2020, 56(4): 411-428.
[2] 胡宽辉, 毛新平, 周桂峰, 刘静, 王志奋. Si和Mn含量对超高强度热成形钢组织和性能的影响[J]. 金属学报, 2018, 54(8): 1105-1112.
[3] 袁训华, 张启富. 22MnB5热成形钢奥氏体化时热镀Al-10%Si镀层组织的演化[J]. 金属学报, 2017, 53(11): 1495-1503.
[4] 程俊业,赵爱民,陈银莉,董瑞,黄耀. 不同温度回火后30MnB5热成形钢的EBSD研究[J]. 金属学报, 2013, 49(2): 137-145.
[5] 沈军,冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展[J]. 金属学报, 2013, 49(11): 1286-1294.
[6] 陈慧琴; 刘建生 . Mn18Cr18N钢热成形晶粒变化的模拟研究[J]. 金属学报, 1999, 35(1): 53-56 .