Please wait a minute...
金属学报  2022, Vol. 58 Issue (2): 175-183    DOI: 10.11900/0412.1961.2020.00443
  研究论文 本期目录 | 过刊浏览 |
Fe-C-Ni体系膨胀应变能对马氏体转变的影响
陈维1,2, 陈洪灿1,2, 王晨充3, 徐伟3, 罗群1,2(), 李谦1,2, 周国治1,2
1.上海大学 材料科学与工程学院 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444
2.上海大学 材料科学与工程学院 上海市钢铁冶金新技术应用开发重点实验室 上海 200444
3.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation
CHEN Wei1,2, CHEN Hongcan1,2, WANG Chenchong3, XU Wei3, LUO Qun1,2(), LI Qian1,2, CHOU Kuochih1,2
1.State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2.Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
3.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
Wei CHEN, Hongcan CHEN, Chenchong WANG, Wei XU, Qun LUO, Qian LI, Kuochih CHOU. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. Acta Metall Sin, 2022, 58(2): 175-183.

全文: PDF(2219 KB)   HTML
摘要: 

为探究马氏体转变膨胀应变能对马氏体转变起始温度(Ms)的影响以及实现对Ms的准确预测,采用热膨胀相变仪测定了Fe-C-Ni合金的膨胀曲线,通过三切线法得到Ms与奥氏体转变起始温度。采用OM观察和XRD技术分析了成分对马氏体转变后组织和晶格参数的影响规律。通过考虑C成分与Ni成分交互作用,修正了马氏体转变膨胀应变能模型。以马氏体转变化学驱动力(同成分bcc相与fcc相的Gibbs自由能差)与非化学驱动力(奥氏体的剪切应变能、奥氏体的膨胀应变能、马氏体的缺陷储能和奥氏体与马氏体的界面能)之和为0作为判据,计算了Fe-C-Ni体系的Ms。结果表明,C含量与Ni含量的增加会促进转变后bcc相的晶格膨胀,Ni含量的增加会使形成的马氏体的板条变细小。在C含量(原子分数)小于1.0%,Ni含量(原子分数)小于20%的Fe-C-Ni合金中,计算得到膨胀应变能在非化学驱动力中的平均占比为41.3%。使用修正后的模型计算Fe-C-Ni体系的Ms,预测误差为4.1%。

关键词 Fe-C-Ni体系马氏体转变起始温度膨胀应变能热力学计算    
Abstract

Ultrahigh-strength steels have been widely used in critical engineering structures in military and civilian applications owing to the combination of ultrahigh strength and excellent toughness. The martensitic transformation start temperature (Ms) is an important parameter for designing alloys; it describes the thermodynamic stability and transformation behavior of austenite, affecting the strength and toughness of the alloy. To explore the influence of dilatational strain energy during martensitic transformation on Ms and calculate Ms in the Fe-C-Ni system, the dilatational curves of Fe-C-Ni alloys are measured using a dilatometer. Three tangents method is used to calculate Ms and austenitic transformation start temperature. The influence of composition on microstructure and lattice parameters after martensitic transformation was analyzed using OM and XRD. The dilatational strain energy model in the nonchemical driving force of martensitic transformation is modified considering the interaction between C and Ni components. The Ms of Fe-C-Ni system was calculated using a thermodynamic model in which the sum of martensitic transformation chemical driving force (the difference of Gibbs free energy between fcc and bcc phases) and nonchemical driving force (shearing strain energy of austenite, dilatational strain energy of austenite, dislocation stored energy of martensite, and interfacial energy of austenite and martensite) is zero. These results show that increasing C and Ni contents promote lattice expansion of the bcc phase after transformation whereas increasing Ni content reduces the martensite lath. The average proportion of dilatational strain energy of austenite in nonchemical driving force is approximately 41.3% in Fe-C-Ni alloys with atomic fractions of C < 1.0% and Ni < 20%. The prediction error of Ms in the Fe-C-Ni system is 4.1% using the modified model.

Key wordsFe-C-Ni system    martensitic transformation start temperature    dilatational strain energy    thermodynamic calculation
收稿日期: 2020-11-04     
ZTFLH:  TG111.3  
基金资助:国家自然科学基金项目(U1808208);上海大学省部共建高品质特殊钢冶金与制备国家重点实验室自主课题项目(SKLASS2020-Z01);上海市科学技术委员会项目(19DZ2270200)
作者简介: 陈 维,男,1994年生,硕士
Steel numberNiCFe
118.330.49Bal.
29.140.47Bal.
34.320.48Bal.
415.620.86Bal.
57.940.88Bal.
64.090.97Bal.
表1  Fe-C-Ni合金的成分 (atomic fraction / %)
图1  不同C含量的Fe-C-Ni合金的膨胀曲线(a) 0.48%C (b) 0.90%C
图2  不同成分Fe-C-Ni合金显微组织的OM像(a) Fe-18.33%Ni-0.49%C (b) Fe-9.14%Ni-0.47%C (c) Fe-4.32%Ni-0.48%C(d) Fe-15.62%Ni-0.86%C (e) Fe-7.94%Ni-0.88%C (f) Fe-4.09%Ni-0.97%C
图3  Fe-C-Ni合金的XRD谱和计算的Fe-C-Ni合金bcc相的晶格常数
图4  Fe-C-Ni体系马氏体相变线膨胀率(ΔL / L)模型拟合曲线
图5  Fe-Ni体系实验值0.5(Ms + As)[36~40]与T0温度预测值(本工作与文献[41,42])比较以及计算的Fe-C-Ni体系Ms (Ms—马氏体转变起始温度,As—奥氏体转变起始温度,T0—化学驱动力为0时的温度)
图6  不同Ni含量的Fe-C-Ni合金Ms计算值与本工作和文献[11,43~45]实验值及3种模型对Fe-C-Ni合金Ms的计算值(本工作与文献[11,22])和实验值对比(实验数据来源:Fe-C[11,50~53]、Fe-Ni[36,46,54~56]、Fe-C-Ni[11,43,44,54])
图7  Fe-C-Ni合金在Ms处的非化学驱动力与膨胀应变能
1 Jin X J , Gong Y , Han X H , et al . A review of current state and prospect of the manufacturing and application of advanced hot stamping automobile steels [J]. Acta Metall. Sin., 2020, 56: 411
1 金学军, 龚 煜, 韩先洪 等 . 先进热成形汽车钢制造与使用的研究现状与展望 [J]. 金属学报, 2020, 56: 411
2 Tian Y Q , Tian G , Zheng X P , et al . C and Mn elements characterization and stability of retained austenite in different locations of quenching and partitioning bainite steels [J]. Acta Metall. Sin., 2019, 55: 332
2 田亚强, 田 耕, 郑小平 等 . 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性 [J]. 金属学报, 2019, 55: 332
3 Wang C Y , Chang Y , Yang J , et al . The combined effect of hot deformation plus quenching and partitioning treatment on martensite transformation of low carbon alloyed steel [J]. Acta Metall. Sin., 2015, 51: 913
3 王存宇, 常 颖, 杨 洁 等 . 热变形和淬火配分处理的复合作用对低碳合金钢马氏体相变机制的影响 [J]. 金属学报, 2015, 51: 913
4 Celada-Casero C , Sietsma J , Santofimia M J . The role of the austenite grain size in the martensitic transformation in low carbon steels [J]. Mater. Des., 2019, 167: 107625
5 Santofimia M J , Zhao L , Petrov R , et al . Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel [J]. Acta Mater., 2011, 59: 6059
6 Zhang B , Peng Y H , Lu X , et al . Study of γε martensite transformation of Fe-24Mn-Ge alloys [J]. Acta Metall. Sin., 2001, 37: 1238
6 张 斌, 彭颖红, 陆 兴 等 . Fe-Mn-Ge合金γε马氏体相变的研究 [J]. 金属学报, 2001, 37: 1238
7 Hu L , Wang X , Yi X H , et al . Influence of inter-pass temperature on residual stress in multi-layer and multi-pass butt-welded 9%Cr heat-resistant steel pipes [J]. Acta Metall. Sin., 2018, 54: 1767
7 胡 磊, 王 学, 尹孝辉 等 . 层间温度对9%Cr热强钢管道多层多道焊接头残余应力的影响 [J]. 金属学报, 2018, 54: 1767
8 Lee S J , Park K S . Prediction of martensite start temperature in alloy steels with different grain sizes [J]. Metall. Mater. Trans., 2013, 44A: 3423
9 Finkler H , Schirra M . Transformation behaviour of the high temperature martensitic steels with 8-14% chromium [J]. Steel Res., 1996, 67: 328
10 van Bohemen S M C , Santofimia M J , Sietsma J . Experimental evidence for bainite formation below MS in Fe-0.66C [J]. Scr. Mater., 2008, 58: 488
11 Hsu T Y . An approximate approach for the calculation of MS in iron-base alloys [J]. J. Mater. Sci., 1985, 20: 23
12 Luo Q , Chen H C , Chen W , et al . Thermodynamic prediction of martensitic transformation temperature in Fe-Ni-C system [J]. Scr. Mater., 2020, 187: 413
13 Olson G B , Cohen M . A general mechanism of martensitic nucleation: Part II. FCC→BCC and other martensitic transformations [J]. Metall. Trans., 1976, 7A: 1905
14 Olson G B , Cohen M . A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation [J]. Metall. Trans., 1976, 7A: 1897
15 Ghosh G , Olson G B . Kinetics of f.c.c.→b.c.c. heterogeneous martensitic nucleation-II. Thermal activation [J]. Acta Metall. Mater., 1994, 42: 3371
16 Lu Q , Liu S L , Li W , et al . Combination of thermodynamic knowledge and multilayer feedforward neural networks for accurate prediction of MS temperature in steels [J]. Mater. Des., 2020, 192: 108696
17 Wang C C , Shen C G , Huo X J , et al . Design of comprehensive mechanical properties by machine learning and high-throughput optimization algorithm in RAFM steels [J]. Nucl. Eng. Technol., 2020, 52: 1008
18 Eyercioglu O , Kanca E , Pala M , et al . Prediction of martensite and austenite start temperatures of the Fe-based shape memory alloys by artificial neural networks [J]. J. Mater. Process. Technol., 2008, 200: 146
19 Wang C C , Shen C G , Cui Q , et al . Tensile property prediction by feature engineering guided machine learning in reduced activation ferritic/martensitic steels [J]. J. Nucl. Mater., 2020, 529: 151823
20 You W , Fang H S , Bai B Z . Predicting the martensitic transformation start temperature using back-propagation artificial neural networks [J]. Acta Metall. Sin., 2003, 39: 630
20 由 伟, 方鸿生, 白秉哲 . 用反向传播人工神经网络预测低碳低合金钢的马氏体转变开始温度 [J]. 金属学报, 2003, 39: 630
21 Yang F X , Zheng W S , He Y L , et al . Thermodynamic calculation of martensitic transformation start temperature in Fe-C-Mn-Si-Cr alloys [J]. Shanghai Met., 2016, 38(1): 1
21 杨飞翔, 郑伟森, 何燕霖 等 . Fe-C-Mn-Si-Cr的马氏体开始转变点的热力学计算 [J]. 上海金属, 2016, 38(1): 1
22 Ishida K . Calculation of the effect of alloying elements on the Ms temperature in steels [J]. J. Alloys Compd., 1995, 220: 126
23 Ishida K . Effect of alloying elements on the critical driving force of martensitic transformation in iron alloys [J]. Scr. Metall., 1977, 11: 237
24 Xie H J , Wu X C , Min Y A . Influence of chemical composition on phase transformation temperature and thermal expansion coefficient of hot work die steel [J]. J. Iron Steel Res. Int., 2008, 15: 56
25 Lukas H L , Fries S G , Sundman B . Computational Thermodynamics: the Calphad Method [M]. Cambridge: Cambridge University Press, 2007: 79
26 van Bohemen S M C , Morsdorf L . Predicting the Ms temperature of steels with a thermodynamic based model including the effect of the prior austenite grain size [J]. Acta Mater., 2017, 125: 401
27 Wang B H , Bai B Z , Ma H F , et al . Yield ratio of Nb-Ti micro-alloyed Mn-series low carbon bainitic steel with different tempering temperature [J]. Chin. J. Rare Met., 2019, 43: 151
27 王宝华, 白秉哲, 马海峰 等 . 回火温度对Nb-Ti微合金化Mn系低碳贝氏体钢屈强比的影响 [J]. 稀有金属, 2019, 43: 151
28 Ji Y P , Ren H P , Peng J , et al . Growth restriction effect of solutes on refinement of solidification structure in iron-based binary alloys [J]. Chin. J. Rare Met., 2020, 44: 886
28 计云萍, 任慧平, 彭 军 等 . 铁基二元合金凝固细化中溶质的生长抑制作用 [J]. 稀有金属, 2020, 44: 886
29 Nakada N , Kusunoki N , Kajihara M , et al . Difference in thermodynamics between ferrite and martensite in the Fe-Ni system [J]. Scr. Mater., 2017, 138: 105
30 He Y M , Zhang J X , Wang Y H , et al . The expansion behavior caused by deformation-induced martensite to austenite transformation in heavily cold-rolled metastable austenitic stainless steel [J]. Mater. Sci. Eng., 2019, A739: 343
31 Moyer J M , Ansell G S . The volume expansion accompanying the martensite transformation in iron-carbon alloys [J]. Metall. Trans., 1975, 6A: 1785
32 Ren X B , Wang X T . Carbon ordering in Fe-1.83C martensite II. Crystal structure of long-period ordered phase [J]. Acta Metall. Sin., 1994, 30: 337
32 任晓兵, 王笑天 . Fe- 1.83C马氏体中碳的有序化Ⅱ. 长周期有序相的晶体结构 [J]. 金属学报, 1994, 30: 337
33 Hsu T Y , Li L , Jiang B H . Thermodynamic calculation of the equilibrium temperature between the tetragonal and monoclinic phases in CeO2-ZrO2 [J]. Mater. Trans., 1996, 37: 1281
34 Fields R J , Weerasooriya T , Ashby M F . Fracture-mechanisms in pure iron, two austenitic steels, and one ferritic steel [J]. Metall. Trans., 1980, 11A: 333
35 Field D M , Baker D S , Van Aken D C . On the prediction of α-martensite temperatures in medium manganese steels [J]. Metall. Mater. Trans., 2017, 48A: 2150
36 Kaufman L , Cohen M . The martensitic transformation in the iron-nickel system [J]. JOM, 1956, 8(10): 1393
37 Scheil E , Saftig E . Messung der umwandlungswärme bei der martensitbildung an eisen-nickel-legierungen mit hilfe eines trockeneiskalorimeters [J]. Arch. Eisenhüttenwes., 1960, 31: 623
38 Yeo R B G . Effect of some alloying elements on the transformation of Fe-22.5PctNi alloys [J]. Trans. Metall. Soc. AIME, 1963, 227: 884
39 Ishida K , Nishizawa T . Ferrite/austenite stabilizing parameter of alloying elements in steel at 200-500oC [J]. Trans. Jpn. Inst. Met., 1974, 15: 217
40 Campbell C E . Systems design of high-performance stainless steels [D]. Evanston: Northwestern University, 1997
41 Gabriel A , Gustafson P , Ansara I . A thermodynamic evaluation of the C-Fe-Ni system [J]. Calphad, 1987, 11: 203
42 Ghosh G , Olson G B . Computational thermodynamics and the kinetics of martensitic transformation [J]. J. Phase Equilib., 2001, 22: 199
43 Magee C L , Davies R G . The structure, deformation and strength of ferrous martensites [J]. Acta Metall., 1971, 19: 345
44 Rao M M , Winchell P G . Growth rate of bainite form low-carbon iron-nickel-carbon austenite [J]. Trans. Metall. Soc. AIME, 1967, 239: 956
45 Steven W , Haynes A G . Temperature of formation of martensite and bainite in low-alloy steel [J]. J. Iron Steel Inst., 1956, 183: 349
46 Izumiyama M , Tsuchiya M , Yunoshin I . Effects of alloying element on supercooled A3 transformation of iron [J]. Sci. Rep. Res. Inst., Tohoku Univ., 1970, 22A: 105
47 Li P Y , Wang Y S , Meng F Y , et al . Effect of heat treatment temperature on martensitic transformation and superelasticity of the Ti49Ni51 shape memory alloy [J]. Materials, 2019, 12: 2539
48 Ning B Q , Yan Z S , Fu J C , et al . Austenitic stability process of T91 steel held isothermally above Ms [J]. J. Mater. Sci. Eng., 2011, 29: 21
48 宁保群, 严泽生, 付继成 等 . Ms点以上保温时T91钢的奥氏体稳定化过程 [J]. 材料科学与工程学报, 2011, 29: 21
49 Hsu T Y , Li J , Zeng Z P . Effect of solution strengthening of austenite on martensitic transformation in Fe-Ni-C alloys [J]. Acta Metall. Sin., 1986, 22(6): 46
49 徐祖耀, 李 箭, 曾振鹏 . Fe-Ni-C合金中奥氏体固溶强化对马氏体相变的影响 [J]. 金属学报, 1986, 22(6): 46
50 Greninger A B . The martensite thermal arrest in iron-carbon alloys and plain carbon steels [J]. Trans. ASM, 1942, 30: 1
51 Wilson E A . The γα transformation in iron and its dilute alloys [J]. Scr. Metall., 1970, 4: 309
52 Morozov O P . Règles cinétiques et structurales de transformation de l'austénite dans les aciers [J]. Fiz. Met. Metalloved., 1984, 57: 142
53 Mirzaev D A , Shtejnberg M M , Ponomareva T N , et al . Effect of cooling rate on martensite point position: Carbon steels [J]. Fiz. Met. Metalloved., 1979, 47: 125
54 Goodenow R H , Hehemann R F . Transformation in iron and Fe-9pct Ni alloys [J]. Trans. Metall. Soc. AIME, 1965, 233: 1777
55 Winchell P G , Cohen M . The strength of martensite [J]. Trans. Amer. Soc. Met., 1962, 55: 347
56 Mirzaev D A , Morozov O P , Shtejnberg M M . On the relation between γ➝α transformations in iron and iron alloys [J]. Fiz. Met. Metalloved., 1973, 36: 560
[1] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[3] 黄宇, 成国光, 谢有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9): 1253-1261.
[4] 潘涛, 王小勇, 苏航, 杨才福. 合金元素Al对微B处理特厚钢板淬透性及力学性能的影响*[J]. 金属学报, 2014, 50(4): 431-438.
[5] 韩国民,韩志强,Alan A. Luo,Anil K. Sachdev,柳百成. Mg-Al合金Mg17Al12连续析出相形貌的相场模拟[J]. 金属学报, 2013, 49(3): 277-283.
[6] 梁静静,朱明,袁忠华,王君武,金涛,孙晓峰,胡壮麒. Re对NiCoCrAlY涂层合金相组成的影响[J]. 金属学报, 2013, 49(3): 330-340.
[7] 马跃 苏航 潘涛 余音宏 杨才福 张永权 彭云. 中高碳钢中复合延性夹杂物控制研究[J]. 金属学报, 2012, 48(11): 1321-1328.
[8] 王衣 孙锋 董显平 张澜庭 单爱党. 新型Ni-Co基高温合金中平衡析出相的热力学研究[J]. 金属学报, 2010, 46(3): 334-339.
[9] 蒯春光; 彭志方 . T/P91钢在450-1200 ℃区间 各相元素的分配特征及相稳定性[J]. 金属学报, 2008, 44(8): 897-900 .
[10] 于金; 蒋建清; 方峰; 董岩; 谈荣生; 吴三械 . 真空铝热还原法制备金属Sr的热力学分析及实验研究[J]. 金属学报, 2005, 41(8): 824-828 .
[11] 吴翠微; 董建新; 张麦仓; 王改莲; 谢锡善 . α-Cr相在IN718合金中的析出及其热力学计算[J]. 金属学报, 2001, 37(11): 1174-1178 .
[12] 丁学勇;王文忠. 二元系熔体中组元活度的计算式[J]. 金属学报, 1994, 30(22): 444-447.
[13] 丁学勇;王文忠;韩其勇. Fe-P-j三元系熔体的热力学计算[J]. 金属学报, 1993, 29(12): 21-26.