Please wait a minute...
金属学报  2022, Vol. 58 Issue (2): 193-205    DOI: 10.11900/0412.1961.2021.00504
  研究论文 本期目录 | 过刊浏览 |
拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响
郑椿1, 刘嘉斌2(), 江来珠1, 杨成1, 姜美雪1
1.福建青拓特钢技术研究有限公司 宁德 355006
2.浙江大学 材料科学与工程学院 杭州 310027
Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels
ZHENG Chun1, LIU Jiabin2(), JIANG Laizhu1, YANG Cheng1, JIANG Meixue1
1.Fujian Tsingtuo Special Steel Technology and Research Co. , Ltd. , Ningde 355006, China
2.School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
引用本文:

郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
Chun ZHENG, Jiabin LIU, Laizhu JIANG, Cheng YANG, Meixue JIANG. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. Acta Metall Sin, 2022, 58(2): 193-205.

全文: PDF(5283 KB)   HTML
摘要: 

对高氮奥氏体不锈钢QN1803和常规奥氏体不锈钢304进行了不同形变量的拉伸实验,通过EBSD、XRD和TEM分析了其形变组织和强韧化机制。采用电化学工作站、酸性介质腐蚀实验和OM、SEM分析了不同拉伸形变量下的耐腐蚀性能和腐蚀机理。随着拉伸形变量的增加,QN1803和304不锈钢的微观组织均出现由位错塞积到α'马氏体的转变。QN1803不锈钢的屈服强度比304不锈钢提高了26%,延伸率降低了约6.6%,其原因是QN1803不锈钢中N含量高、30%冷变形后产生50%马氏体所对应的温度(Md30)较低,拉伸过程中产生的形变马氏体含量低于304不锈钢,相变增韧效应不如304不锈钢充分。拉伸形变对QN1803和304不锈钢的晶间腐蚀影响不大,但其耐点腐蚀能力、耐硫酸腐蚀能力均有下降,其中QN1803不锈钢下降的幅度明显小于304不锈钢。主要原因是形变马氏体导致不锈钢表面钝化膜破坏和稳定性下降,使钝化膜在腐蚀中处于不稳定的溶解-生成状态,从而降低了形变后的耐腐蚀性能。总体而言,提高奥氏体不锈钢的N含量能够节约Ni元素的使用,大幅提高不锈钢屈服强度,略微损害延伸率,但显著提升拉伸形变条件下的耐点蚀和耐硫酸腐蚀性能。

关键词 高氮奥氏体不锈钢拉伸形变形变马氏体点腐蚀晶间腐蚀硫酸腐蚀    
Abstract

Nitrogen-alloyed austenitic stainless steel QN1803 (2.0%Ni-3.5%Ni) has been developed to replace the conventional 304 stainless steel (8%Ni). Both the microstructure and the corrosion resistance of both types of stainless steels in the annealed state have been extensively studied, whereas those in the cold strained state have not been studied sufficiently. The aforementioned stainless steels often undergo cold forming processes during industrial applications, such as straightening, leveling, and bending, etc., which may lead to the changes of microstructure and corrosion resistances as well as the performance. In this study, the tensile tests were performed with different tensile strains for both nitrogen-alloyed QN1803 and the conventional 304 stainless steels. The microstructure and strengthening, as well as the toughening mechanisms were investigated using EBSD, XRD, and TEM. The corrosion resistance and its mechanism under different tensile strains were evaluated and analyzed via electrochemical workstation, acid corrosion tests, OM, and SEM. Notably, the microstructures of both QN1803 and 304 stainless steels are changed from dislocation plugging to α' martensite with the increase in tensile strain. The yield strength of QN1803 stainless steel is 26% higher, while its elongation is 6.6% lower than that of 304 stainless steels, respectively. This could be attributed to both the higher nitrogen content and the lower transition temperature of 50% martensite induced by 30% strain (Md30) for QN1803 stainless steel as compared with that for 304 stainless steel. As a result, the volume fraction of the strain-induced martensite for QN1803 stainless steel under tensile strain is lower, leading to the lower toughening effect than that of 304 stainless steel. Interestingly, the experiments show that the tensile strain has a minor effect on the intergranular corrosion whereas noticeably negative effect on both the pitting and the sulfuric acid corrosion resistances of both stainless steels. Not surprisingly, 304 stainless steel undergoes a more remarkable decrease in both the pitting and the sulfuric acid corrosion resistances with the increase in tensile strain as compared with QN1803 stainless steel. This could be well understood since martensite could lead to the destruction or deterioration of the passive film on the stainless steel surface, producing an unstable dissolution-generation state during corrosion, thus reducing the corrosion resistance after tensile deformation. In conclusion, the yield strength is enhanced, ductility is slightly impaired, and both the pitting and the sulfuric acid corrosion resistances under tensile deformation are improved by nitrogen alloying. Based on these technical advantages, together with the nickel saving effect, QN1803 stainless steel has been applied in various industrial areas, such as building, construction, and home appliance, etc.

Key wordshigh nitrogen austenitic stainless steel    tensile deformation    deformation martensite    pitting corrosion    intergranular corrosion    sulfuric acid corrosion
收稿日期: 2021-11-21     
ZTFLH:  TG142.1  
基金资助:福建省科技重大专项项目(2017HZ0001-3)
作者简介: 郑 椿,1993年生,硕士生
SteelCSiMnPSCrNiCuMoNFe
QN18030.0700.355.400.030.000518.23.201.050.120.225Bal.
3040.0500.451.020.030.002018.28.020.100.030.045Bal.
表1  QN1803和304不锈钢化学成分 (mass fraction / %)
图1  QN1803不锈钢不同拉伸形变量下的EBSD像(a) as-annealed (b) 10% tensile strain (c) 20% tensile strain (d) as-fractured state
图2  304不锈钢不同拉伸形变量下的EBSD像(a) as-annealed (b) 10% tensile strain (c) 20% tensile strain (d) as-fractured state
图3  冷轧退火态QN1803和304不锈钢的室温拉伸应力-应变曲线
SteelTensile strength / MPaYield strength / MPaElongation / %Yield ratio
QN180382439456.90.478
30475031360.90.417
表2  冷轧退火态QN1803和304不锈钢的室温拉伸力学性能
SteelStateEbiairRaCorrosion rate / (g·m-2·h-1)
mVmA·cm-2mA·cm-2%In 10%HNO3 + 3%HFIn 10%H2SO4
QN1803As-annealed3515402.90.53624.62.26
10% tensile strain3415731.30.23617.92.56
20% tensile strain3106303.20.50616.32.54
As-fractured3135491.80.33625.52.64
304As-annealed336103118.71.81335.717.86
10% tensile strain330107616.91.57345.718.80
20% tensile strain289102118.51.81345.820.59
As-fractured28289413.61.52348.622.15
表3  QN1803和304不锈钢不同拉伸形变下的耐腐蚀性能对比
图4  QN1803不锈钢不同拉伸形变量下的XRD谱
图5  冷轧退火态QN1803不锈钢显微组织的TEM像(a) grain boundary (b) stacking fault
图6  拉伸形变量为10%时QN1803不锈钢显微组织的TEM像
图7  拉伸形变量为20%时QN1803不锈钢显微组织的TEM像
图8  QN1803不锈钢拉伸断裂显微组织的TEM像
SteelγSF / (mJ·m-2)Md30 / oC
QN180322.35-7.06
30419.019.33
表4  QN1803和304不锈钢的堆垛层错能(γSF)、形变量30%时产生50%马氏体的转变温度(Md30)
图9  QN1803和304不锈钢不同拉伸形变量下的马氏体和孪晶界含量
图10  拉伸形变量为20%和断裂状态时304不锈钢显微组织的TEM像
图11  QN1803和304不锈钢不同拉伸形变量下的极化曲线
图12  QN1803和304不锈钢不同拉伸形变量下的DL-EPR曲线
图13  冷轧退火态和断裂时QN1803和304不锈钢晶间腐蚀形貌的OM像
图14  QN1803和304不锈钢不同拉伸形变量下的晶间腐蚀速率
图15  冷轧退火态和断裂时QN1803和304不锈钢硫酸腐蚀表面形貌的SEM像
图16  QN1803和304不锈钢不同拉伸形变量下的硫酸腐蚀速率
1 Lo K H , Shek C H , Lai J K L . Recent developments in stainless steels [J]. Mater. Sci. Eng., 2009, R65: 39
2 Zeng Y , Yang J H , Wang B , et al . Comparison of microstructure and properties of low-nickel austenitic stainless steels [J]. Heat. Treat. Met., 2020, 45(6): 163
2 曾 垚, 杨剑洪, 王 碧 等 . 节镍型奥氏体不锈钢的组织性能对比 [J]. 金属热处理, 2020, 45(6): 163
3 Wang Y , Peng X F , Li J , et al . Research progress on strengthening mechanism and ballistic performance of high nitrogen austenitic stainless steels [J]. Iron Steel, DOI: 10.13228/j.boyuan.issn0449-749x.20210373
3 王 宇, 彭翔飞, 李 俊 等 . 高氮奥氏体不锈钢强韧化及抗弹性能研究进展 [J]. 钢铁, DOI: 10.13228/j.boyuan.issn0449-749x.2021-0373
4 Wang X Y . Study on hot deformation behavior of nickel-reduced high nitrogen austenitic stainless steel [J]. Metall. Mater., 2019, 39(4): 41
4 王祥元 . 节镍型高氮奥氏体不锈钢热变形行为的研究 [J]. 冶金与材料, 2019, 39(4): 41
5 Lu S Y . Introduction to Stainless Steel [M]. Beijing: Chemical Industry Press, 2013: 27
5 陆世英 . 不锈钢概论 [M]. 北京: 化学工业出版社, 2013: 27
6 Singh B B , Sukumar G , Paman A , et al . A comparative study on the ballistic performance and failure mechanisms of high-nitrogen steel and RHA steel against tungsten heavy alloy penetrators [J]. J. Dyn. Behav. Mater., 2021, 7: 60
7 Weng J Y , Dong H , Li B , et al . Effect of nitrogen content on microstructure and properties of high nitrogen CrMnMo austenitic stainless steel [J]. Heat Treat. Met., 2020, 45(1): 160
7 翁建寅, 董 瀚, 李 北 等 . N含量对高氮CrMnMo奥氏体不锈钢组织和性能的影响 [J]. 金属热处理, 2020, 45(1): 160
8 Werner E . Solid solution and grain size hardening of nitrogen-alloyed austenitic steels [J]. Mater. Sci. Eng., 1988, A101: 93
9 Zhang J L , Yan B , Wang D P , et al . Fundamentals of Materials Science [M]. Beijing: Chemical Industry Press, 2006: 1
9 张钧林, 严 彪, 王德平 等 . 材料科学基础 [M]. 北京: 化学工业出版社, 2006: 1
10 Zhang R H , Yang C , Shi N , et al . Research progress in plastic deformation characteristics of high nitrogen austenitic steel [J]. Mater. Rep., 2021, 35: 11155
10 张荣华, 杨 川, 石 宁 等 . 高氮奥氏体钢的塑性加工变形特性研究进展 [J]. 材料导报, 2021, 35: 11155
11 Jiang Y , Cheng M L , Jiang H H , et al . Microstructure and properties of 08Cr19Mn6Ni3Cu2N (QN1803) high strength nitrogen alloyed low nickel austenitic stainless steel [J]. Acta. Metall. Sin., 2020, 56: 642
11 蒋 一, 程满浪, 姜海洪 等 . 高强度含N节Ni奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能 [J]. 金属学报, 2020, 56: 642
12 Li M , Liu Y J , Bao Y L , et al . Causes and countermeasures of chromatism in hard stainless steel [J]. Baosteel Technol., 2019, (4): 8
12 李 明, 刘亚军, 包玉龙 等 . 硬态不锈钢色差缺陷产生原因及对策 [J]. 宝钢技术, 2019, (4): 8
13 Dong X B , He C , Tang Z G , et al . Investigation on microstructure and mechanical properties of SUS304DQ strip steel [J]. Dev. Appl. Mater., 2020, 35(3): 6
13 董贤帮, 贺 超, 唐振光 等 . SUS304DQ精密光亮带钢显微组织及力学性能的研究 [J]. 材料开发与应用, 2020, 35(3): 6
14 Zhou W Q , Ma W W , Li Y M , et al . Effect of sensitizing treatment on the microstructure and susceptibility to intergranular corrosion of high-nitrogen austenitic stainless steel [J]. Metallogr. Microstruct. Anal., 2021, 10: 25
15 Tsai S P , Makineni S K , Gault B , et al . Precipitation formation on Σ5 and Σ7 grain boundaries in 316L stainless steel and their roles on intergranular corrosion [J]. Acta Mater., 2021, 210: 116822
16 Zhao M , Chai L J , Yuan S S , et al . Brief review on optimizing grain boundary character distribution and enhancing intergranular corrosion resistance of FCC metals [J]. J. Chongqing Univ. Technol. (Nat. Sci.), 2018, 32(1): 135
16 赵 漫, 柴林江, 袁珊珊 等 . FCC金属晶界特征分布优化及晶间腐蚀改善 [J]. 重庆理工大学学报(自然科学), 2018, 32(1): 135
17 Kina A Y , Souza V M , Tavares S S M , et al . Microstructure and intergranular corrosion resistance evaluation of AISI 304 steel for high temperature service [J]. Mater. Charact., 2008, 59: 651
18 Zhang X S , Xu Y , Zhang S H , et al . Research on the collaborative effect of plastic deformation and solution treatment in the intergranular corrosion property of austenite stainless steel [J]. Acta. Metall. Sin, 2017, 53: 335
18 张晓嵩, 徐 勇, 张士宏 等 . 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究 [J]. 金属学报, 2017, 53: 335
19 Zhang P C . Strain induced martensite behavior of 316L stainless steel subjected to warm deformation [J]. Heat Treat. Met., 2019, 44(2): 44
19 张鹏程 . 316L不锈钢在温变形条件下的应变诱导马氏体行为 [J]. 金属热处理, 2019, 44(2): 44
20 Qi M H , Ren S B , Chen J H , et al . Research progress on high nitrogen stainless steel prepared by powder metallurgy technology [J]. Powder Metall. Technol., 2017, 35: 299
20 齐美欢, 任淑彬, 陈建豪 等 . 粉末冶金制备高氮不锈钢的研究进展 [J]. 粉末冶金技术, 2017, 35: 299
21 Berns H . Manufacture and application of high nitrogen steels [J]. ISIJ Int., 1996, 36: 909
22 Cui D W , Lun G D , Wang J L , et al . Preparation of high nitrogen austenitic stainless steel by mechanical alloying and spark plasma sintering [J]. Heat Treat. Met., 2018, 43(10): 45
22 崔大伟, 伦冠德, 王金龙 等 . 机械合金化及放电等离子烧结制备高氮奥氏体不锈钢 [J]. 金属热处理, 2018, 43(10): 45
23 Wang B , Hong C S , Winther G , et al . Deformation mechanisms in meta-stable and nitrogen-stabilized austenitic stainless steel during severe surface deformation [J]. Materialia, 2020, 12: 100751
24 Allain S , Chateau J P , Bouaziz O , et al . Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys [J]. Mater. Sci. Eng., 2004, A387-389: 158
25 Ji J N . Precipitation behavior of Cu-rich nanoscale phase and strengthening mechanism in high manganese austenite [D]. Harbin: Harbin Engineering University, 2020
25 纪佳楠 . 高锰奥氏体钢中富铜纳米相析出行为及强化机制研究 [D]. 哈尔滨: 哈尔滨工程大学, 2020
26 Dong M H . Stacking fault energies in austenitic stainless steel: A theoretical study [D]. Taiyuan: Taiyuan University of Technology, 2011
26 董明慧 . 奥氏体不锈钢层错能的理论研究 [D]. 太原: 太原理工大学, 2011
27 Dai Q X , Wang A D , Cheng X N . Stacking fault energy of cryogenic austenitic steel [J]. J. Iron Steel Res., 2002, 14(4): 34
27 戴起勋, 王安东, 程晓农 . 低温奥氏体钢的层错能 [J]. 钢铁研究学报, 2002, 14(4): 34
28 Kuniya J , Masaoka I , Sasaki R . Effect of cold work on the stress corrosion cracking of nonsensitized AISI 304 stainless steel in high-temperature oxygenated water [J]. Corrosion, 1988, 44: 21
29 Chen X Y , Karasz E , Badwe N , et al . Dynamic fracture and dealloying induced stress-corrosion cracking [J]. Corros. Sci., 2021, 187: 109503
30 Pal S , Bhadauria S S , Kumar P . Studies on stress corrosion cracking of F304 stainless steel in boiling magnesium chloride solution [J]. J. Bio-. Tribo.-Corros., 2021, 7: 62
31 Cheng M L , He P , Lei L L , et al . Comparative studies on microstructure evolution and corrosion resistance of 304 and a newly developed high Mn and N austenitic stainless steel welded joints [J]. Corros. Sci., 2021, 183: 109338
32 Fu X Y . Effect of nitrogen and copper on structure and properties of low nickel austenitic stainless steels [D]. Huhhot: Inner Mongolia University of Technology, 2020
32 富晓阳 . 氮铜对低镍奥氏体不锈钢组织性能的影响 [D]. 呼和浩特: 内蒙古工业大学, 2020
33 Ouyang M H , Liu H A , Ye J X . The Discussion on the corroison of stainless steel in concentrated sulfuric acid [J]. Total Corros. Control, 2015, 29(8): 39
33 欧阳明辉, 刘焕安, 叶际宣 . 不锈钢在浓硫酸中的腐蚀探讨 [J]. 全面腐蚀控制, 2015, 29(8): 39
[1] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[2] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[3] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[4] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[5] 张显峰,李国爱,陆政,于娟,郝敏. 淬火后预拉伸对自然时效状态Al-Li合金组织和性能的影响*[J]. 金属学报, 2016, 52(12): 1497-1502.
[6] 杨辉, 夏爽, 张子龙, 赵清, 刘廷光, 周邦新, 白琴. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响[J]. 金属学报, 2015, 51(3): 333-340.
[7] 强少明,江来珠,李劲,刘天伟,吴艳萍,蒋益明. 双环电化学动电位再活化法评价11Cr铁素体不锈钢晶间腐蚀敏感性*[J]. 金属学报, 2015, 51(11): 1349-1355.
[8] 李海, 毛庆忠, 王芝秀, 苗芬芬, 方必军, 宋仁国, 郑子樵. 高温预时效+低温再时效对Al-Mg-Si-Cu合金力学性能及晶间腐蚀敏感性的影响[J]. 金属学报, 2014, 50(11): 1357-1366.
[9] 李祥亮,陈江华,刘春辉,冯佳妮,王时豪. T6和T78时效工艺对Al-Mg-Si-Cu合金显微结构和性能的影响[J]. 金属学报, 2013, 49(2): 243-250.
[10] 孙飞龙,李晓刚,卢琳,程学群,董超芳,高瑾. 5052和6061铝合金在中国南海深海环境下的腐蚀行为研究[J]. 金属学报, 2013, 49(10): 1219-1226.
[11] 郭丽芳 李旭晏 孙涛 徐菊良 李劲 蒋益明. 敏化温度对SAF2304双相不锈钢耐局部腐蚀性能的影响[J]. 金属学报, 2012, 48(12): 1503-1509.
[12] 李 海 潘道召 王芝秀 郑子樵. T6I6时效对6061铝合金拉伸及晶间腐蚀性能的影响[J]. 金属学报, 2010, 46(4): 494-499.
[13] 徐菊良 邓博 孙涛 李劲 蒋益明. DL-EPR法评价2205双相不锈钢晶间腐蚀敏感性[J]. 金属学报, 2010, 46(3): 380-384.
[14] 韩冬 蒋益明 邓博 张丽华 张伟 李劲. 时效时间对2101双相不锈钢电化学腐蚀行为的影响[J]. 金属学报, 2009, 45(8): 919-923.
[15] 黄文克 孔凡亚. 冷拔高强00Cr18Ni10N不锈钢丝显微组织与力学性能[J]. 金属学报, 2009, 45(3): 275-279.