Please wait a minute...
金属学报  2017, Vol. 53 Issue (8): 1011-1017    DOI: 10.11900/0412.1961.2016.00438
  本期目录 | 过刊浏览 |
界面能调控熔体中纳米颗粒分布铝热合成铁基ODS合金
刘建学, 席文君(), 李能, 李树杰
北京航空航天大学材料科学与工程学院 北京 100191
Effect of Interfacial Energy on Distribution of Nanoparticle in the Melt During the Preparation of Fe-Based ODS Alloys by Thermite Reaction
Jianxue LIU, Wenjun XI(), Neng LI, Shujie LI
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
引用本文:

刘建学, 席文君, 李能, 李树杰. 界面能调控熔体中纳米颗粒分布铝热合成铁基ODS合金[J]. 金属学报, 2017, 53(8): 1011-1017.
Jianxue LIU, Wenjun XI, Neng LI, Shujie LI. Effect of Interfacial Energy on Distribution of Nanoparticle in the Melt During the Preparation of Fe-Based ODS Alloys by Thermite Reaction[J]. Acta Metall Sin, 2017, 53(8): 1011-1017.

全文: PDF(1109 KB)   HTML
摘要: 

利用铝热合成工艺结合快速凝固技术制备了铁基氧化物弥散强化(ODS)合金。经过优化铝热剂成分,合金熔体中不仅原位生成了α-Al2O3纳米颗粒,还发生了液相调幅分解,形成了富Fe、Cr与富Ni、Al的两相结构。因为α-Al2O3与富Ni、Al相之间的界面能较低,Al2O3纳米颗粒与富Ni、Al相结合,从而在基体中均匀分布。分析了反应熔体发生液相调幅分解的热力学可能性以及纳米颗粒在界面能和Brownian运动影响下的移动速率。实验结果表明,液相调幅分解得到的NiAl相呈球形,直径约50 nm,体积分数约50%;反应合成的α-Al2O3颗粒直径约5 nm,受界面能作用全部与NiAl相结合。计算表明,受界面能和Brownian运动影响,α-Al2O3颗粒移动速率极快,快速冷却过程中完全有时间在两相液体间完成移动和分布。测试表明,铁基ODS合金平均拉伸强度为602 MPa,延伸率为21%,大气环境中1000 ℃下氧化100 h后增重0.4 mg/cm2

关键词 铁基ODS合金界面能液相调幅分解纳米Al2O3粒子NiAl相    
Abstract

Fe-based oxide dispersion strengthened (ODS) alloys are conventionally manufactured through mechanical alloying. Such route even involves an expensive milling step but the oxide surface still could not avoid being contaminated. This work developed a new method by combination of thermite reaction and rapid solidification (RS) to prepare ODS alloys. Attributing to the optimization of thermite mixture composition, nanoparticle α-Al2O3 was synthetized in situ and the molten alloy was modulated by spinodal decomposition (SD) into Fe, Cr-rich and Ni, Al-rich regions. During the cooling of the melt, the low interfacial energy between α-Al2O3 and Ni, Al-rich region was also considered in the process for nanoparticles α-Al2O3 to assemble into NiAl, thus they could uniformly distribute in matrix. This work focuses on the thermodynamic analysis of SD in the melt alloy and the speed of the nanoparticles α-Al2O3 under the influence of interfacial energy and Brownian motion. Experiment results shows that the spherical NiAl segregated by SD has a mean diameter of about 50 nm, whose volume fraction reaches up to 50%; and nanoparticle α-Al2O3, formed during thermite reaction, has a diameter of 5 nm combined into NiAl under the influence of interfacial energy. Computation results indicate that, driven by interfacial energy and Brownian motion, nanoparticle α-Al2O3 could move fast enough into Ni, Al-rich region before solidification accomplishes during RS. Test results imply that the tensile strength of Fe-based ODS alloy is 602 MPa with ultimate elongation of 21% and its mass gain under 1000 ℃ in air for 100 h is 0.4 mg/cm2.

Key wordsFe-based ODS alloy    interfacial energy    liquid spinodal decomposition    nanoparticle Al2O3    NiAl phase
收稿日期: 2016-10-05     
ZTFLH:  TG148  
基金资助:国家自然科学基金项目No.51472015
作者简介:

作者简介 刘建学,男,1990年生,硕士生

图1  铝热反应合成装置示意图
图2  铝热反应合成铁基氧化物弥散强化(ODS)合金的XRD谱
图3  铁基ODS合金的TEM像、HRTEM像及SAED谱
图4  纳米Al2O3颗粒移动示意图
Material Yield strength Ultimate tensile ultimate Mass gain Ref.
MPa strength / MPa elongation / % mgcm-2
MA956 493 591 28.5 0.3 [32, 33]
PM2000 870 890 13 0.4 [34~36]
MA754 (Ni-based) 688 1052 23 0.8 [37, 38]
Fe-based ODS alloy 394 602 21 0.4 This work
表1  铁基ODS合金与各种商用合金的抗拉伸性能与氧化增重结果
[1] Wright I G, Wilcox B A, Jaffee R I.The high-temperature oxidation of Ni-20%Cr alloys containing various oxide dispersions[J]. Oxid. Met., 1975, 9: 275
[2] Nagai H, Takebayashi Y, Mitani H.Effect of dispersed oxides of rare earths and other reactive elements on the high temperature oxidation resistance of Fe-20Cr alloy[J]. Metall. Trans., 1981, 12A: 435
[3] Ukai S, Harada M, Okada H, et al.Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials[J]. J. Nucl. Mater., 1993, 204: 65
[4] Merzhanov A G.Self-propagating high-temperature synthesis: twenty years of search and findings [A]. Combustion and Plasma Synthesis of High-Temperature Materials[M]. New York: VCH Publishers, 1990: 1
[5] Duan H P, Sheng Y, Liu M, et al.Stainless steel lined composite steel pipe produced by centrifugal SHS process[J]. J. Mater. Sci. Lett., 1996, 15: 1060
[6] Xi W J, Yin S, Guo S J, et al.Stainless steel lined composite steel pipe prepared by centrifugal-SHS process[J]. J. Mater. Sci., 2000, 35: 45
[7] Xi W J, Peng R L, Wu W, et al.Al2O3 nanoparticle reinforced Fe-based alloys synthesized by thermite reaction[J]. J. Mater. Sci., 2012, 47: 3585
[8] Cui Y, Xi W J, Wang X, et al.Al2O3 nanoparticle and NiAl reinforced Fe-based ODS alloys synthesized by thermite reaction[J]. Acta Metall. Sin., 2015, 51: 791(崔跃, 席文君, 王星等. 纳米Al2O3和NiAl共同强化的铁基ODS合金的铝热合成研究[J]. 金属学报, 2015, 51: 791)
[9] Wang X, Xi W J, Cui Y, et al.Microstructure evolution mechanism and mechanical properties of FeNiCrAl alloy reinforced by coherent NiAl synthe-sized by thermite process[J]. Acta Metall. Sin. 2015, 51: 483(王星, 席文君, 崔跃等. 铝热合成NiAl共格强化的FeNiCrAl合金的组织演化机理和力学性能[J]. 金属学报, 2015, 51: 483)
[10] Wu W, Xi W J.Effect of heat decomposition process and thermal treatment for TiO2 Xerogel powder on surface organic functional groups[J]. Chin. J. Inorg. Chem., 2011, 27: 659(吴伟, 席文君. 二氧化钛干凝胶热分解及热处理对表面有机官能团变化的影响[J]. 无机化学学报, 2011, 27: 659)
[11] Chen R F, Liu H T.Preparation of Cr-doped TiO2/SiO2 photocatalysts and their photocatalytic properties[J]. J. Chin. Chem. Soc., 2011, 58: 947
[12] Hao S M, Ishida K, Nishizawa T.Role of alloying elements in phase decomposition in alnico magnet alloys[J]. Metall. Trans., 1985, 16A: 179
[13] Bradley A J.Microscopical studies on the iron-nickel-aluminium system. Part I——α+β alloys and isothermal sections of the phase equilibrium diagram[J]. J. Iron Steel Inst., 1949, 163: 19
[14] Bradley A J.Microscopical studies on the iron-nickel-aluminium system. Part II——The breakdown of the body-centered cubic lattice[J]. J. Iron Steel Inst., 1951, 168: 233
[15] Bradley A J.Microscopical studies on the iron-nickel-aluminium system. Part III——Transformations of the β and β' phase[J]. J. Iron Steel Inst., 1952, 171: 41
[16] Hao S M, Takayama T, Ishida K, et al.Miscibility gap in Fe-Ni-Al and Fe-Ni-Al-Co systems[J]. Metall. Trans., 1984, 15A: 1819
[17] Wang C P, Liu X J, Ohnuma I, et al.Thermodynamic database of the phase diagrams in Cu-Fe base ternary systems[J]. J. Phase Equilib. Diff., 2004, 25: 320
[18] Baumli P, Sytchev J, Kaptay G.Perfect wettability of carbon by liquid aluminum achieved by a multifunctional flux[J]. J. Mater. Sci., 2010, 45: 5177
[19] Rohrer G S.Grain boundary energy anisotropy: A review[J]. J. Mater. Sci., 2011, 46: 5881
[20] Triantafyllou G, Angelopoulos G N, Nikolopoulos P.Surface and grain-boundary energies as well as surface mass transport in polycrystalline yttrium oxide[J]. J. Mater. Sci., 2010, 45: 2015
[21] Nikolopoulos P, Agathopoulos S, Tsoga A.A method for the calculation of interfacial energies in Al2O3 and ZrO2/liquid-metal and liquid-alloy systems[J]. J. Mater. Sci., 1994, 29: 4393
[22] Sharan A, Cramb A W.Surface tension and wettability studies of liquid Fe-Ni-O alloys[J]. Metall. Mater. Trans., 1997, 28B: 465
[23] Silvain J F, Bihr J C, Douin J.Wettability, reactivity and stress relaxation of an NiAl(Ti)/Al2O3 composite[J]. Compos. Appl. Sci. Manuf., 1998, 29A: 1175
[24] Nakanishi K, Soga N.Phase separation in silica sol-gel system containing polyacrylic acid I. Gel formaation behavior and effect of solvent composition[J]. J. Non-Cryst. Solids, 1992, 139: 1
[25] Kaptay G.Interfacial criterion of spontaneous and forced engulfment of reinforcing particles by an advancing solid/liquid interface[J]. Metall. Mater. Trans., 2001, 32A: 993
[26] K?rber C, Rau G, Cosman M D, et al.Interaction of particles and a moving ice-liquid interface[J]. J. Cryst. Growth, 1985, 72: 649
[27] Uhlmann D R, Chalmers B, Jackson K A.Interaction between particles and a solid-liquid interface[J]. J. Appl. Phys., 1964, 35: 2986
[28] Sen S, Dhindaw B K, Stefanescu D M, et al.Melt convection effects on the critical velocity of particle engulfment[J]. J. Cryst. Growth, 1997, 173: 574
[29] Washizu T, Nagasaka T, Hino M.Viscosity of liquid Fe-Cu-Si alloy formed in new melting process for domestic waste incineration residue[J]. Mater. Trans., 2001, 42: 471
[30] Huang Z Q, Ding E J.Surface Wetting and Wetting Transition [M]. Shanghai: Shanghai Science & Technical Publishers, 1994: 40(黄祖洽, 丁鄂江. 表面浸润和浸润相变 [M]. 上海: 上海科学技术出版社, 1994: 40)
[31] Chen Z Q, Dai M G.Colloidal Chemistry [M]. Beijing: Higher Education Press, 1984: 38(陈宗淇, 戴闽光. 胶体化学[M]. 北京: 高等教育出版社, 1984: 38)
[32] Wang J Y, Yuan W, Mishra R S, et al.Microstructure and mechanical properties of friction stir welded oxide dispersion strengthened alloy[J]. J. Nucl. Mater., 2013, 432: 274
[33] Quadakkers W J, Holzbrecher H, Briefs K G, et al.Differences in growth mechanisms of oxide scales formed on ODS and conventional wrought alloys[J]. Oxid. Met., 1989, 32: 67
[34] Klueh R L, Shingledecker J P, Swindeman R W, et al.Oxide dispersion-strengthened steels: a comparison of some commercial and experimental alloys[J]. J. Nucl. Mater., 2005, 341: 103
[35] Montealegre M A, Strehl G, González-Carrasco J L, et al. Oxidation behaviour of novel ODS FeAlCr intermetallic alloys[J]. Intermetallics, 2005, 13: 896
[36] Weinbruch S, Anastassiadis A, Ortner H M, et al.On the mechanism of high-temperature oxidation of ODS superalloys: significance of yttrium depletion within the oxide scales[J]. Oxid. Met., 1999, 51: 111
[37] Wittenberger J D.Creep and tensile properties of several oxide-dispersion-strengthened nickel-base alloys at 1365 K [R]. Cleveland, OH, United States: NASA Lewis Research Center, 1977
[38] Pint B A, Wright I G.Oxidation behavior of ODS Fe-Cr alloys[J]. Oxid. Met., 2005, 63: 193
[39] Sokolov M A, Hoelzer D T, Stoller R E, et al. Fracture toughness and tensile properties of nano-structured ferritic steel 12YWT [J]. J. Nucl. Mater., 2007, 367-370: 213
[1] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[2] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[3] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[4] 坚增运, 徐涛, 许军锋, 朱满, 常芳娥. 熔体-结晶相固-液界面能的研究进展[J]. 金属学报, 2018, 54(5): 766-772.
[5] 李双明, 王斌强, 刘振鹏, 钟宏, 胡锐, 刘毅, 罗锡明. 高熔点金属Ir和Mo电子束区熔中不同取向晶体的竞争生长[J]. 金属学报, 2018, 54(10): 1435-1441.
[6] 宁礼奎,佟健,刘恩泽,谭政,纪慧思,郑志. Ru对一种高Cr镍基单晶高温合金凝固组织的影响[J]. 金属学报, 2017, 53(4): 423-432.
[7] 沈琴,王晓姣,赵安宇,何益锋,方旭磊,马佳荣,刘文庆. Mn对钢中富Cu相和NiAl相复合析出过程的影响*[J]. 金属学报, 2016, 52(5): 513-518.
[8] 孙倩,江鸿翔,赵九洲. 微量元素Bi对Al-Pb合金凝固过程及显微组织的影响*[J]. 金属学报, 2016, 52(4): 497-504.
[9] 崔跃,席文君,王星,李树杰. 纳米Al2O3和NiAl共同强化的铁基ODS合金的铝热合成研究[J]. 金属学报, 2015, 51(7): 791-798.
[10] 王星, 席文君, 崔跃, 李树杰. 铝热合成NiAl共格强化的FeNiCrAl合金的组织演化机理和力学性能[J]. 金属学报, 2015, 51(4): 483-491.
[11] 张正延, 李昭东, 雍岐龙, 孙新军, 王振强, 王国栋. 升温过程中Nb和Nb-Mo微合金化钢中碳化物的析出行为研究[J]. 金属学报, 2015, 51(3): 315-324.
[12] 戴付志, 张文征. 双相不锈钢中沉淀相平衡形貌及界面结构的原子尺度计算[J]. 金属学报, 2014, 50(9): 1123-1127.
[13] 韩国民,韩志强,Alan A. Luo,Anil K. Sachdev,柳百成. Mg-Al合金Mg17Al12连续析出相形貌的相场模拟[J]. 金属学报, 2013, 49(3): 277-283.
[14] 彭东剑,林鑫,张云鹏,郭雄,王猛,黄卫东. 界面追踪法研究界面能各向异性对定向凝固枝晶生长的影响[J]. 金属学报, 2013, 49(3): 365-371.
[15] 杨梅 王刚 滕春禹 徐东生 张鉴 杨锐 王云志. Ti-6Al-4V中界面能对α相片层生长的影响三维相场模拟[J]. 金属学报, 2012, 48(2): 148-158.