Please wait a minute...
金属学报  2018, Vol. 54 Issue (10): 1435-1441    DOI: 10.11900/0412.1961.2018.00013
  本期目录 | 过刊浏览 |
高熔点金属Ir和Mo电子束区熔中不同取向晶体的竞争生长
李双明1(), 王斌强1, 刘振鹏1, 钟宏1, 胡锐1, 刘毅2, 罗锡明2
1 西北工业大学凝固技术国家重点实验室 西安 710072
2 昆明贵金属研究所 昆明 650106
Grain Orientation Competitive Growth of High Melting Point Metals Ir and Mo Under Electron Beam Floating Zone Melting
Shuangming LI1(), Binqiang WANG1, Zhenpeng LIU1, Hong ZHONG1, Rui HU1, Yi LIU2, Ximing LUO2
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 Kunming Institute of Precious Metals, Kunming 650106, China
引用本文:

李双明, 王斌强, 刘振鹏, 钟宏, 胡锐, 刘毅, 罗锡明. 高熔点金属Ir和Mo电子束区熔中不同取向晶体的竞争生长[J]. 金属学报, 2018, 54(10): 1435-1441.
Shuangming LI, Binqiang WANG, Zhenpeng LIU, Hong ZHONG, Rui HU, Yi LIU, Ximing LUO. Grain Orientation Competitive Growth of High Melting Point Metals Ir and Mo Under Electron Beam Floating Zone Melting[J]. Acta Metall Sin, 2018, 54(10): 1435-1441.

全文: PDF(2856 KB)   HTML
摘要: 

通过分析bcc结构金属Mo和fcc结构金属Ir电子束区熔中3种不同取向[100]、[110]和[111]晶体生长,发现金属Mo在平界面凝固下会以[110] 取向择优生长,而在凸界面下可能存在[100]和[110] 2种择优生长方向,取决于界面能各向异性参数a1a2的相对大小,说明电子束区熔中金属Mo单晶通常呈现[110]择优取向,而不是通常认为的[100]择优取向。无论是在平界面还是凸界面下,fcc结构高熔点金属Ir始终以[100]择优取向生长,并通过Ir单晶生长实验得到验证。电子束区熔下需综合考虑晶体生长曲率过冷度和动力学过冷度的影响,小尺寸试样(晶粒尺寸在毫米量级及以下)中晶向选择和淘汰取决于曲率过冷度;大尺寸试样(晶粒尺寸在厘米量级及以上)的晶向选择和淘汰主要依靠动力学过冷度。

关键词 电子束区熔晶粒竞争生长界面能各向异性择优取向    
Abstract

The preparation of single crystal involves the grain orientation competitive growth. For high melting point metals, Mo is a typical bcc crystal structure and its preferred growth orientation of single crystal was revealed to be the [110] direction, different from the known preferred growth orientation [100] for bcc metals during solidification. This disagreement remains unclear. For the high melting point metal Ir that is a fcc crystal structure, its preferred growth orientation of single crystal remains unknown. Based on electron beam floating zone melting (EBFZM), the orientation competitive growth of these two metals Mo and Ir with three different directions [100], [110] and [111] has been analyzed using solidification theory. It shows that the preferred growth orientation of Mo is the [110] direction at a planar front interface. When introducing the interface energy anisotropy, the preferred growth orientation of Mo could be the [100] or the [110] direction, depending on the magnitude of interface energy anisotropy parameters a1 and a2. This result matches well with the experimental results of Mo single crystal prepared by EBFZM. For the fcc structure Ir, its preferred growth orientation always keeps the [100] direction, agreeing with the experimental results of Ir single crystal prepared by EBFZM in this study. Besides, the effects of interface curvature undercooling and kinetic undercooling on the growth behavior of single-crystal metals prepared by EBFZM have been discussed. It demonstrates that when the grain size in the specimen is in the order of about millimeter or less, the curvature undercooling would dominate the grain orientation competitive growth. As the grain size becomes in the order of about centimeter or larger, the kinetic undercooling would prefer the grain competitive growth process.

Key wordselectron beam floating zone melting    grain orientation competitive growth    interface energy anisotropy    preferred growth direction
收稿日期: 2018-01-10     
ZTFLH:  TG292  
基金资助:国家自然科学基金-云南省联合基金项目No.U1202273和国家自然科学基金项目No.51774239
作者简介:

作者简介 李双明,男,1971年生,教授

图1  平直界面电子束区熔下Ir和Mo金属晶粒取向生长的动力学过冷度(ΔTk)与生长速率(V)之间的关系
图2  部分fcc金属和Mo的界面能各向异性参数a1和a2的分布(数据来源参考文献[17]),其中d[100]和d[110]分别为[100]和[110]取向的界面刚度)
图3  电子束区熔凸界面下Ir和Mo不同取向生长晶粒的曲率过冷度(ΔTr)与曲率晶粒半径(r)之间的关系
图4  电子束区熔金属Ir和Mo不同取向生长时ΔTr=ΔTk下V与r的关系
图5  电子束区熔下金属Ir的晶粒淘汰过程及单晶XRD谱和Laue取向测试
[1] Kenji A.Why do we study ultra-high purity base metals?[J]. Mater. Trans., JIM, 2000, 41: 233
[2] Yang B C, Hu Y D, Cui H L.Trend in development and applications of sputtering target materials[J]. Vacuum, 2002, (1): 1(杨邦朝, 胡永达, 崔红玲. 溅射靶材的应用及发展趋势[J]. 真空, 2002, (1): 1)
[3] Duffar T.Crystal Growth Processes Based on Capillarity: Czochralski, Floating Zone, Shaping and Crucible Techniques[M]. Chichester: John Wiley & Sons Ltd, 2010: 204
[4] Glebovsky V G, Semenov V N, Lomeyko V V.The characteristic features of growth and the real structure of tungsten tube crystals[J]. J. Cryst. Growth, 1989, 98: 487
[5] Zhang J, Shu D, Rao Q L, et al.Nucleation and growth of high purity aluminum grains in directional solidification bulk sample without electromagnetic stirring[J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 1
[6] Xu Z M, Guo Z Q, Li J G.A new method to evaluate the quality of single crystal Cu by an X-ray diffraction butterfly pattern method[J]. Mater. Charact., 2004, 53: 395
[7] Lee D N, Kim K H, Lee Y G, et al.Factors determining crystal orientation of dendritic growth during solidification[J]. Mater. Chem. Phys., 1997, 47: 154
[8] Hu Z W, Li Z K, Zhang Q, et al.Progress on single crystals of refractory metals of their alloys[J]. Rare Met. Mater. Eng., 2007, 36: 367(胡忠武, 李中奎, 张清等. 难熔金属及其合金单晶的发展[J]. 稀有金属材料与工程, 2007, 36: 367)
[9] Xiao D C, Li C Y, Ying T R, et al.Preparation of niobium single crystals with floating zone melting technique and a discussion on its mechanism[J]. Shanghai Met.(Nonferrous Met.), 1983, 4(2): 11(肖德传, 李长英, 应铁如等. 悬浮区熔法制取铌单晶及其机理探讨[J]. 上海金属(有色分册), 1983, 4(2): 11)
[10] Stefanescu D M.Science and Engineering of Casting Solidification [M]. 3rd Ed., Switzerland: Springer International Publishing, 2015: 157
[11] Gonzales F, Rappaz M.Dendrite growth directions in aluminum-zinc alloys[J]. Metall. Mater. Trans., 2006, 37A: 2797
[12] Dantzig J A, Di Napoli P, Friedli J, et al.Dendritic growth morphologies in Al-Zn alloys—Part II: Phase-field computations[J]. Metall. Mater. Trans., 2013, 44A: 5532
[13] Haxhimali T, Karma A, Gonzales F, et al.Orientation selection in dendritic evolution[J]. Nat. Mater., 2006, 5: 660
[14] Verstraete M J, Charlier J C.Why is iridium the best substrate for single crystal diamond growth?[J]. Appl. Phys. Lett., 2005, 86: 191917
[15] Glebovsky V G, Semenov V N.Growing single crystals of high-purity refractory metals by electron-beam zone melting[J]. High Temp. Mater. Proc., 1995, 14: 121
[16] Cawkwell M J, Nguyen-Manh M, Woodward C, et al.Origin of brittle cleavage in iridium[J]. Science, 2005, 309: 1059
[17] Hoyt J J, Asta M, Sun D Y.Molecular dynamics simulations of the crystal-melt interfacial free energy and mobility in Mo and V[J]. Philos. Mag., 2006, 86: 3651
[18] Amini M, Laird B B.Kinetic coefficient for hard-sphere crystal growth from the melt[J]. Phys. Rev. Lett., 2006, 97: 216102
[19] Jiang Q, Lu H M.Size dependent interface energy and its applications[J]. Surf. Sci. Rep., 2008, 63: 427
[20] Zee R H, Xiao Z, Chin B A, et al.Processing of single crystals for high temperature applications[J]. J. Mater. Proc. Technol., 2001, 113: 75
[21] Napolitano R E, Liu S, Trivedi R.Experimental measurement of anisotropy in crystal-melt interfacial energy[J]. Interface Sci., 2002, 10: 217
[22] Keene B J.Review of data for the surface tension of pure metals[J]. Int. Mater. Rev., 1993, 38: 157
[23] Wang H.Research on the technology of molybdenum crystals of refractory metals prepared by electron beam floating zone melting [D]. Xi'an: Northwestern Polytechnical University, 2007(王红. 难熔金属钼晶体的电子束悬浮区熔定向凝固工艺研究 [D]. 西安: 西北工业大学, 2007)
[24] Li S M, Geng Z B, Hu R, et al.Effect of growth angle and solidification rate on the floating zone stability for processing of high-temperature pure metals[J]. Acta Metall. Sin., 2015, 51: 114(李双明, 耿振博, 胡锐等. 高熔点金属区域熔炼中晶体生长角和凝固速率对熔区稳定性的影响[J]. 金属学报, 2015, 51: 114)
[25] Yang J R, Wang H, Wang B Q, et al.Numerical and experimental study of electron beam floating zone melting of Iridium single crystal[J]. J. Mater. Proc. Technol., 2017, 250: 239
[1] 赵宝军,赵宇宏,孙远洋,杨文奎,侯华. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究[J]. 金属学报, 2019, 55(5): 593-600.
[2] 张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
[3] 唐宁, 王艳丽, 许庆彦, 赵希宏, 柳百成. 宽弦航空叶片Bridgeman定向凝固组织数值模拟[J]. 金属学报, 2015, 51(4): 499-512.
[4] 李双明, 耿振博, 胡锐, 刘毅, 罗锡明. 高熔点金属区域熔炼中晶体生长角和凝固速率对熔区稳定性的影响[J]. 金属学报, 2015, 51(1): 114-120.
[5] 高卡, 李双明, 傅恒志. 定向凝固过共晶合金Al-Al2Cu的组织演化及取向分析*[J]. 金属学报, 2014, 50(8): 962-970.
[6] 童文辉 王杰 周吉学 杨院生. 气体保护熔炼条件下Mg-Gd-Y-Zr合金的夹杂物[J]. 金属学报, 2012, 48(1): 63-69.
[7] 郭志鹏 熊守美 Mei Li John Allison. 压铸过程中铸件-铸型界面换热系数与铸件凝固速率的关系[J]. 金属学报, 2009, 45(1): 102-106.
[8] 郭志鹏; 熊守美; 曺尚铉; 崔正吉 . 合金材料以及工艺参数对压铸过程中铸件/铸型界面换热系数的影响[J]. 金属学报, 2008, 44(4): 433-439 .
[9] 于靖; 许庆彦; 李嘉荣; 袁海龙; 刘世忠; 柳百成 . 镍基高温合金多叶片定向凝固过程数值模拟[J]. 金属学报, 2007, 43(10): 1113-1120 .
[10] 郭志鹏; 熊守美; 曺尚铉; 崔正吉 . 热传导反算模型的建立及其在求解界面热流过程中的应用[J]. 金属学报, 2007, 43(6): 607-611 .
[11] 崔锴; 许庆彦; 于靖; 柳百成; 木间明彦;黑木康德;横山文彦 . 高温合金叶片定向凝固过程中辐射换热的计算[J]. 金属学报, 2007, 43(5): 465-471 .
[12] 郭志鹏; 熊守美; 曹尚铉; 崔正吉 . 铝合金高压铸造过程铸件与铸型间的界面热交换系数的研究[J]. 金属学报, 2007, 42(1): 103-106 .
[13] 贾清; 崔玉友; 杨; 锐 . 钛合金精密铸造用陶瓷模壳研究[J]. 金属学报, 2004, 40(11): 1170-1174 .
[14] 梁作俭; 许庆彦; 李俊涛 . Ti-Al合金精密铸件微观缩松预测[J]. 金属学报, 2003, 39(3): 278-282 .
[15] 钟勇; 阎德胜; 苏国跃; 杨柯 . LY12合金的挤压铸造微观偏析及改善方法[J]. 金属学报, 2001, 37(1): 42-46 .