Please wait a minute...
金属学报  2020, Vol. 56 Issue (9): 1304-1312    DOI: 10.11900/0412.1961.2020.00015
  本期目录 | 过刊浏览 |
无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较
张海军1,2, 邱实3, 孙志梅3, 胡青苗1(), 杨锐1
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
3 北京航空航天大学材料科学与工程学院 北京 100191
First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA
ZHANG Haijun1,2, QIU Shi3, SUN Zhimei3, HU Qingmiao1(), YANG Rui1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 School of Materials Science and Engineering, Beihang University, Beijing 100191, China
引用本文:

张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较[J]. 金属学报, 2020, 56(9): 1304-1312.
Haijun ZHANG, Shi QIU, Zhimei SUN, Qingmiao HU, Rui YANG. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. Acta Metall Sin, 2020, 56(9): 1304-1312.

全文: PDF(2028 KB)   HTML
摘要: 

采用第一性原理方法(VASP及EMTO)结合特殊准无序结构(SQS)和相干势近似(CPA)的方法,对比研究了bcc结构β-Ti1-xNbx无序合金的晶格参数、自由能及弹性常数随成分x的变化。结果表明,VASP-SQS及EMTO-CPA计算得到的晶格参数符合良好,均随Nb含量增加而增加,局域晶格弛豫对晶格参数的影响可以忽略;EMTO-CPA自由能计算预测β-Ti1-xNbx中存在相分解,但VASP-SQS计算因依赖于具体SQS结构,难以合理地描述合金的相分解。EMTO-CPA及无弛豫VASP-SQS计算得到的弹性常数C11C12随Nb含量增加而增大,C44减小,但EMTO-CPA高估了合金的弹性稳定性;低Nb含量时,由于β-Ti1-xNbx的bcc结构不稳定,导致VASP-SQS计算得到的局域晶格畸变显著增加,使得考虑原子弛豫的VASP-SQS计算得到的自由能及弹性常数随Nb含量的变化偏离正常趋势。

关键词 钛合金无序合金特殊准无序结构相干势近似弹性常数第一性原理计算    
Abstract

Elastic modulus is one of the key properties for the application of biomedical β titanium alloy as human bone replacement because the elastic modulus of the alloy has to match that of the bone so as to avoid the stress shielding effect. Alloying of Nb is commonly used in biomedical β titanium alloys. In the present work, the lattice parameter, free energy and elastic modulus of β-Ti1-xNbx alloy were investigated by using first-principles method based on density functional theory. The random distribution of Nb atoms in the alloy were described by using both special quasirandom structure (SQS) and the coherent potential approximation (CPA) techniques, in combination with first principles plane-wave pseudopotential (VASP) and exact muffin-tin orbital (EMTO) methods, respectively. The results showed that the lattice constants from both VASP-SQS and EMTO-CPA calculations increase linearly with Nb content x, while the influence of the local lattice distortion is negligible. The calculations of the free energies demonstrated that EMTO-CPA predicts reasonably the phase decomposition of β-Ti1-xNbx at relatively low temperature whereas VASP-SQS does not, which might be ascribed to the fact that the free energy depends strongly on the detailed SQS structures. The elastic constants C11 and C12 calculated by using EMTO-CPA and VASP-SQS without atomic relaxation increase with Nb content whereas C44 decreases. EMTO-CPA overestimates the elastic stability of β-Ti1-xNbx. At low Nb content, the local lattice distortion is abnormally large due to the lattice instability of the β-Ti1-xNbx, making the free energy and elastic constant against x from VASP-SQS calculations with atomic relaxation deviate significantly from the general trend.

Key wordstitanium alloy    random solid solution    special quasirandom structure    coherent potential approximation    elastic constant    first-principles calculation
收稿日期: 2020-01-10     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2016YFB0701301);国家自然科学基金项目(91860107);国家重点基础研究发展计划项目(2014CB644001)
作者简介: 张海军,男,1991年生,博士
图1  β-Ti1-xNbx合金的晶格常数随Nb含量的变化
图2  β-Ti1-xNbx合金的形成焓随Nb含量的变化
图3  不同温度下β-Ti1-xNbx合金的Gibbs自由能(ΔG)随Nb含量的变化及相图
图4  β-Ti1-xNbx合金的弹性常数随Nb含量的变化Color online
图5  Ti30Nb24、Ti24Nb30和Ti18Nb36剪切模量和Young's模量随晶体取向的变化Color online
图6  β-Ti1-xNbx合金的机械稳定性随Nb含量的变化
图7  β-Ti1-xNbx合金的局域晶格畸变(Δd)和畸变能(ΔE)随Nb含量的变化
[1] Brunette D M, Tengvall P, Textor M, et al. Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications [M]. Berlin: Springer, 2001: 703
[2] Woodman J L, Jacobs J J, Galante J O, et al. Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: A long-term study [J]. J. Orthop. Res., 1984, 1: 421
doi: 10.1002/jor.1100010411 pmid: 6491791
[3] Mohammadi S, Wictorin L, Ericson L E, et al. Cast titanium as implant material [J]. J. Mater. Sci.: Mater. Med., 1995, 6: 435
doi: 10.1007/BF00123367
[4] Semlitsch M F, Weber H, Streicher R M, et al. Joint replacement components made of hot-forged and surface-treated Ti-6A1-7Nb alloy [J]. Biomaterials, 1992, 13: 781
doi: 10.1016/0142-9612(92)90018-j pmid: 1391401
[5] Bordji K, Jouzeau J Y, Mainard D, et al. Cytocompatibility of Ti-6A1-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts [J]. Biomaterials, 1996, 17: 929
doi: 10.1016/0142-9612(96)83289-3 pmid: 8718939
[6] Yumoto S, Ohashi H, Nagai H, et al. Aluminum neurotoxicity in the rat brain [J]. Int. J. PIXE, 1992, 2: 493
doi: 10.1142/S0129083592000531
[7] Rao S, Ushida T, Tateishi T, et al. Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells [J]. Biomed. Mater. Eng., 1996, 6: 79
pmid: 8761518
[8] Walker P R, LeBlanc J, Sikorska M. Effects of aluminum and other cations on the structure of brain and liver chromatin [J]. Biochemistry, 1989, 28: 3911
doi: 10.1021/bi00435a043 pmid: 2752000
[9] Sarkar B. Biological Aspects of Metals and Metal-Related Diseases [M]. New York: Raven Press, 1983: 209
[10] Sumner D R, Galante J O. Determinants of stress shielding: Design versus materials versus interface [J]. Clin. Orthop. Relat. Res., 1992, 274: 202
[11] Engh C A, Bobyn J D. The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty [J]. Clin. Orthop. Relat. Res., 1988, 231: 7
[12] Wang K. The use of titanium for medical applications in the USA [J]. Mater. Sci. Eng., 1996, A213: 134
[13] Huiskes R, Weinans H, Van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials [J]. Clin. Orthop. Relat. Res., 1992, 274: 124
[14] Khan M A, Williams R L, Williams D M. In-vitro corrosion and wear of titanium alloys in the biological environment [J]. Biomaterials, 1996, 17: 2117
doi: 10.1016/0142-9612(96)00029-4 pmid: 8922597
[15] Kuroda D, Niinomi M, Morinaga M, et al. Design and mechanical properties of new β type titanium alloys for implant materials [J]. Mater. Sci. Eng., 1998, A243: 244
[16] Tane M, Akita S, Nakano T, et al. Peculiar elastic behavior of Ti-Nb-Ta-Zr single crystals [J]. Acta Mater., 2008, 56: 2586
[17] Zhang M H, Yu Z T, Zhou L, et al. Biocompatibility evaluation of β-type titanium alloys [J]. Rare Met. Mater. Eng., 2007, 36: 1815
[17] (张明华, 于振涛, 周 廉等. β型钛合金材料的生物相容性评价 [J]. 稀有金属材料与工程, 2007, 36: 1815)
[18] Song Y, Xu D S, Yang R, et al. Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys [J]. Mater. Sci. Eng., 1999, A260: 269.
[19] Sun J, Yao Q, Xing H, et al. Elastic properties of β, α'' and ω metastable phases in Ti-Nb alloy from first-principles [J]. J. Phys. Condens. Matter, 2007, 19: 486215
doi: 10.1088/0953-8984/19/48/486215
[20] Ikehata H, Nagasako N, Furuta T, et al. First-principles calculations for development of low elastic modulus Ti alloys [J]. Phys. Rev., 2004, 70B: 174113
[21] Gutiérrez Moreno J J, Papageorgiou D G, Evangelakis G A, et al. An abinitio study of the structural and mechanical alterations of Ti-Nb alloys [J]. J. Appl. Phys., 2018, 124: 245102
doi: 10.1063/1.5025926
[22] Gutiérrez Moreno J J, Bonisch M, Panagiotopoulos N T, et al. Ab-initio and experimental study of phase stability of Ti-Nb alloys [J]. J. Alloys Compd., 2017, 696: 481
doi: 10.1016/j.jallcom.2016.11.231
[23] Dai J H, Song Y, Li W, et al. Influence of alloying elements Nb, Zr, Sn, and oxygen on structural stability and elastic properties of the Ti2448 alloy [J]. Phys. Rev., 2014, 89B: 014103
[24] Zhou W C, Sahara R, Tsuchiya K. First-principles study of the phase stability and elastic properties of Ti-X alloys (X=Mo, Nb, Al, Sn, Zr, Fe, Co, and O) [J]. J. Alloys Compd., 2017, 727: 579
doi: 10.1016/j.jallcom.2017.08.128
[25] Zunger A, Wei S H, Ferreira L G, et al. Special quasirandom structures [J]. Phys. Rev. Lett., 1990, 65: 353
pmid: 10042897
[26] Wei S H, Ferreira L G, Bernard J E, alel. Electronic properties of random alloys: Special quasirandom structures [J]. Phys. Rev., 1990, 42B: 9622
[27] Soven P. Coherent-potential model of substitutional disordered alloys [J]. Phys. Rev., 1967, 156: 809
doi: 10.1103/PhysRev.156.809
[28] Gyorffy B L. Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys [J]. Phys. Rev., 1972, 5B: 2382
[29] Zhang S Z, Cui H, Li M M, et al. First-principles study of phase stability and elastic properties of binary Ti-xTM (TM=V, Cr, Nb, Mo) and ternary Ti-15TM-yAl alloys [J]. Mater. Des., 2016, 110: 80
doi: 10.1016/j.matdes.2016.07.120
[30] Hu Q M, Li S J, Hao Y L, et al. Phase stability and elastic modulus of Ti alloys containing Nb, Zr, and/or Sn from first-principles calculations [J]. Appl. Phys. Lett., 2008, 93: 121902
doi: 10.1063/1.2988270
[31] Zhao Y F, Fu Y C, Hu Q M, et al. First-principles investigations of lattice parameters, bulk moduli and phase stabilities of Ti1-xVxand Ti1-xNbx alloys [J]. Acta Metall. Sin., 2009, 45: 1042
[31] (赵宇飞, 符跃春, 胡青苗等. Ti1-xVx及Ti1-xNbx合金晶格参数、体模量及相稳定性的第一原理研究 [J]. 金属学报, 2009, 45: 1042)
[32] Vitos L. Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications [M]. London: Springer, 2007: 247
[33] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
[34] Girifalco L A, Weizer V G. Application of the Morse potential function to cubic metals [J]. Phys. Rev., 1959, 114: 687
doi: 10.1103/PhysRev.114.687
[35] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev., 1993, 47B: 558
[36] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
[37] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci., 1996, 6: 15
doi: 10.1016/0927-0256(96)00008-0
[38] Blöchl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
[39] Van de Walle A, Tiwary P, De Jong M, et al. Efficient stochastic generation of special quasirandom structures [J]. Calphad, 2013, 42: 13
doi: 10.1016/j.calphad.2013.06.006
[40] Birch F. Finite elastic strain of cubic crystals [J]. Phys. Rev., 1947, 71: 809
doi: 10.1103/PhysRev.71.809
[41] Von Pezold J, Dick A, Friák M, et al. Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: Application to Al-Ti [J]. Phys. Rev., 2010, 81: 094203
doi: 10.1103/PhysRevB.81.094203
[42] Tasnádi F, Odén M, Abrikosov I A. Ab initio elastic tensor of cubic Ti0.5Al0.5N alloys: Dependence of elastic constants on size and shape of the supercell model and their convergence [J]. Phys. Rev., 2012, 85B: 144112
[43] Holec D, Tasnádi F, Wagner P, et al. Macroscopic elastic properties of textured ZrN-AlN polycrystalline aggregates: From ab initio calculations to grain-scale interactions [J]. Phys. Rev., 2014, 90B: 184106
[44] Hariharan Y, Janawadkar M P, Radhakrishnan T S, et al. Structure property correlations in superconducting Ti-Nb alloys [J]. Pramana, 1986, 26: 513
doi: 10.1007/BF02880911
[45] Kim H Y, Ikehara Y, Kim J I, et al. Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys [J]. Acta Mater., 2006, 54: 2419
doi: 10.1016/j.actamat.2006.01.019
[46] Dobromyslov A V, Elkin V A. Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4-6 periods [J]. Scr. Mater., 2001, 44: 905
doi: 10.1016/S1359-6462(00)00694-1
[47] Tian L Y, Hu Q M, Yang R, et al. Elastic constants of random solid solutions by SQS and CPA approaches: The case of fcc Ti-Al [J]. J. Phys. Condens. Matter, 2015, 27: 315702
doi: 10.1088/0953-8984/27/31/315702 pmid: 26202339
[48] Tian L Y, Ye L H, Hu Q M, et al. CPA descriptions of random Cu-Au alloys in comparison with SQS approach [J]. Comput. Mater. Sci., 2017, 128: 302
doi: 10.1016/j.commatsci.2016.11.045
[49] Ye L H, Wang H, Zhou G, et al. Phase stability of TiAl-X (X=V, Nb, Ta, Cr, Mo, W, and Mn) alloys [J]. J. Alloys Compd., 2020, 819: 153291
doi: 10.1016/j.jallcom.2019.153291
[50] Hao Y L, Wang H L, Li T, et al. Superelasticity and tunable thermal expansion across a wide temperature range [J]. J. Mater. Sci. Technol., 2016, 32: 705
doi: 10.1016/j.jmst.2016.06.017
[51] Wang H L, Hao Y L, He S Y, et al. Elastically confined martensitic transformation at the nano-scale in a multifunctional titanium alloy [J]. Acta Mater., 2017, 135: 330
[52] Reid C N, Routbort J L, Maynard R A. Elastic constants of Ti-40at.% Nb at 298 °K [J]. J. Appl. Phys., 1973, 44: 1398
[53] Hermann R, Hermann H, Calin M, et al. Elastic constants of single crystalline β-Ti70Nb30 [J]. Scr. Mater., 2012, 66: 198
[54] Jeong H W, Yoo Y S, Lee Y T, et al. Elastic softening behavior of Ti-Nb single crystal near martensitic transformation temperature [J]. J. Appl. Phys., 2010, 108: 063515
[55] Born M. On the stability of crystal lattices. I [J]. Math. Proc. Cambridge Philos. Soc., 1940, 36: 160
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[3] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[4] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[6] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[7] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[8] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[9] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[10] 毛斐, 吕皓, 唐法威, 郭凯, 刘东, 宋晓艳. MnIn添加对SmCo7结构稳定性及磁矩影响的第一性原理计算[J]. 金属学报, 2021, 57(7): 948-958.
[11] 张婷, 李仲杰, 许浩, 董安平, 杜大帆, 邢辉, 汪东红, 孙宝德. 激光沉积法制备Ti/TNTZO层状材料及其组织性能[J]. 金属学报, 2021, 57(6): 757-766.
[12] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[13] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[14] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[15] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.