Please wait a minute...
金属学报  2019, Vol. 55 Issue (3): 369-375    DOI: 10.11900/0412.1961.2018.00102
  本期目录 | 过刊浏览 |
Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算
白静1,2,3,4(),石少锋1,2,王锦龙1,2,王帅2,赵骧1
1. 东北大学材料各向异性与织构教育部重点实验室 沈阳 110819
2. 东北大学秦皇岛分校资源与材料学院 秦皇岛 066004
3. 东北大学秦皇岛分校河北省电介质与电解质功能材料实验室 秦皇岛 066004
4. 东北大学秦皇岛分校秦皇岛市先进金属材料及成型技术重点实验室 秦皇岛 066004
First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys
Jing BAI1,2,3,4(),Shaofeng SHI1,2,Jinlong WANG1,2,Shuai WANG2,Xiang ZHAO1
1. Key Laboratory for Anisotropy and Texture of Materials Ministry of Education, Northeastern University, Shenyang 110819, China
2. School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
3. Hebei Provincial Laboratory for Dielectric and Electrolyte Functional Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
4. Key Laboratory of Advanced Metal Materials and Forming Technology in Qinhuangdao, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
全文: PDF(1858 KB)   HTML
摘要: 

通过第一性原理计算系统地研究了掺杂Ti含量对Ni8Mn4-xGa4Tix (x为单胞中掺杂Ti原子的个数,x=0、0.5、1、1.5和2)铁磁形状记忆合金相稳定性和磁性能的影响。根据能量最低原理,掺杂的Ti组元优先占据Ni2MnGa合金中的Mn阵点。随着Ti含量的增加,顺磁奥氏体与铁磁奥氏体相的总能之差减小,从本质上导致了实验观察到的合金Curie温度(TC)的降低。随着Ti含量的逐渐增加,Fermi面以下自旋向上总电子态密度逐渐降低,而自旋向下的部分几乎不变,导致自旋向上与自旋向下的电子数之差减小,这是Ti含量增加而合金总磁矩降低的本质原因。本工作的计算结果对指导实验中的成分设计和开发新型磁控形状记忆合金具有重要意义。

关键词 Ni-Mn-Ga-Ti第一性原理计算相稳定性磁性能    
Abstract

The main purpose of the present work is to explore the influence of the Ti addition on crystal structure, phase stability, magnetic properties and electronic structures of the Ni8Mn4-xGa4Tix (x is the number of Ti atoms in a unit cell, x=0, 0.5, 1, 1.5 and 2) alloys by first-principles calculations, aiming at providing the theoretical data and directions for developing high performance ferromagnetic shape memory alloys (FSMAs) in this alloy system. The formation energy results indicate that the doped Ti preferentially occupies the Mn sites in Ni2MnGa alloy. With the increase of Ti content, the optimized lattice parameter of the ferromagnetic austenite increases regularly. For the martensitic phase, the lattice parameter a increases while c decreases, leading to a decreased c/a ratio. The paramagnetic and ferromagnetic austenitic phases both become stable because their formation energies (Eform) gradually decrease with the increasing amount of Ti. The experimentally reported decrease in the Curie temperature with increasing Ti content is derived from the decrease of the total energy difference between the paramagnetic and the ferromagnetic austenite. The total magnetic moment is mainly contributed by Mn, while the magnetic moments of Ga and Ti are nearly zero. The total magnetic moment decreases notably when Mn is gradually substituted by Ti because the atomic magnetic moment of Ti is much less than that of Mn, which is in fair consistent with the experimental observations. The intensity of up-spin total density of state (DOS) decreased dramatically with the increase of the Ti content; whereas the change of the down-spin part below EF is not obvious. This feature gives rise to the decrease of the total magnetic moments in these alloys. The results of present work are particularly useful in guiding composition design and developing new type of magnetic shape memory alloy.

Key wordsNi-Mn-Ga-Ti    first-principles calculation    phase stability    magnetic property
收稿日期: 2018-03-19     
ZTFLH:  TG139.6  
基金资助:国家自然科学基金项目(51771044);国家自然科学基金项目(51431005);国家自然科学基金项目(51301036);国家高技术研究发展计划项目(SS2015AA031803);中央高校基本科研业务费专项资金项目(N130523001)
通讯作者: 白静     E-mail: baijing@neuq.edu.cn
Corresponding author: Jing BAI     E-mail: baijing@neuq.edu.cn
作者简介: 白 静,女,1983年生,副教授,博士

引用本文:

白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
Jing BAI, Shaofeng SHI, Jinlong WANG, Shuai WANG, Xiang ZHAO. First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys. Acta Metall Sin, 2019, 55(3): 369-375.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00102      或      https://www.ams.org.cn/CN/Y2019/V55/I3/369

图1  Ni2MnGa合金的晶体结构示意图
xPhasea / nmc / nmc/a
0FA0.5794 (0.5823[35])
NM0.3794 (0.3852[36])0.6736 (0.6580[36])1.775 (1.708[36])
0.5FA0.5806
NM0.38460.65981.716
1FA0.5817
NM0.39090.64171.642
1.5FA0.5830
NM0.41040.58921.436
2FA0.5842
NM0.41250.58401.416
表1  Ni8Mn4-xGa4Tix (x=0、0.5、1、1.5和2)合金的铁磁奥氏体(FA)和非调制马氏体相(NM)的平衡晶格参数
图2  Ni8Mn4-xGa4Tix (x=0、0.5、1、1.5和2)合金的顺磁和铁磁奥氏体相的形成能(Eform)
xEtot (PA) / eVEtot (FA) / eVΔEtot / eVEvaluated TC / K
0-91.214-95.4714.257365
0.5-91.708-95.3753.667314
1-92.222-95.2903.069263
1.5-92.740-95.2112.471212
2-93.239-95.1271.888162
表2  Ni8Mn4-xGa4Tix (x=0、0.5、1、1.5和2)合金顺磁奥氏体和铁磁奥氏体的总能量(Etot (PA)和Etot (FA))和二者的能量差(ΔEtot)以及估算的Curie温度(TC)
xMNiMMnMGaMTiMtot
00.325 (0.334[42])3.085 (3.181[42])-0.050 (-0.037[42])3.732 (3.867[42], 3.960[43])
0.50.201~0.3263.065~3.130-0.056~-0.022-0.0773.222
10.179~0.1893.021~3.144-0.072~-0.019-0.1152.631
1.50.100~0.1923.055~3.135-0.057~-0.016-0.100~-0.0112.189
20.090~0.0953.063-0.042~-0.017-0.0511.680
表3  Ni8Mn4-xGa4Tix (x=0、0.5、1、1.5和2)合金奥氏体相的原子磁矩(MNi、MMn、MGa和MTi)和总磁矩(Mtot)的计算结果
图3  Ni8Mn4-xGa4Tix (x=0、1、2)合金奥氏体母相的自旋总电子态密度
图4  Ni8Mn4-xGa4Tix (x=0、1、2)合金奥氏体母相的自旋分波态密度
[1] Chernenko V A, Cesari E, Kokorin V V, et al. The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system [J]. Scr. Metall. Mater.,1995, 33: 1239
[2] Ullakko K, Huang J K, Kantner C, et al. Large magnetic-field-induced strains in Ni2MnGa single crystals [J]. Appl. Phys. Lett., 1996, 69: 1966
[3] Wu G H, Yu C H, Meng L Q, et al. Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition [J]. Appl. Phys. Lett., 1999, 75: 2990
[4] Pons J, Chernenko V A, Santamarta R, et al. Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys [J]. Acta Mater., 2000, 48: 3027
[5] Murray S J, Marioni M, Tello P G, et al. Giant magnetic-field-induced strain in Ni-Mn-Ga crystals: Experimental results and modeling [J]. Magn J. Magn. Mater., 2001, 226-230: 945
[6] Sozinov A, Likhachev A A, Lanska N, et al. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase [J]. Appl. Phys. Lett., 2002, 80: 1746
[7] Kaneko D, Lwaji Y, Sakamoto K, et al. Initial rotor position estimation of the interior permanent magnet synchronous motor [A]. Proceedings of the Power Conversion Conference—Osaka 2002 [C]. Osaka, Japan: IEEE, 2002: 259
[8] Morito H, Oikawa K, Fujita A, et al. A large magnetic-field-induced strain in Ni-Fe-Mn-Ga-Co ferromagnetic shape memory alloy [J]. J. Alloys Compd., 2013, 577: S372
[9] Gao L, Wang H B, Sui J H, et al. Microstructural characterisation and properties of quaternary Ni50Mn29Ga20Gd1 ferromagnetic shape memory alloy [J]. Mater. Sci. Technol., 2013, 29: 1095
[10] Tsuchiya K, Tsutsumi A, Ohtsuka H, et al. Modification of Ni-Mn-Ga ferromagnetic shape memory alloy by addition of rare earth elements [J]. Mater. Sci. Eng., 2004, A378: 370
[11] Tan C L, Zhang K, Tian X H, et al. Magnetic and mechanical properties of Ni-Mn-Ga/Fe-Ga ferromagnetic shape memory composite [J]. Chin. Phys., 2015, 24B: 057502
[12] Yang S Y, Liu Y, Wang C P, et al. The mechanism clarification of Ni-Mn-Fe-Ga alloys with excellent and stable functional properties [J]. J. Alloys Compd., 2013, 560: 84
[13] Cong D Y, Wang S, Wang Y D, et al. Martensitic and magnetic transformation in Ni-Mn-Ga-Co ferromagnetic shape memory alloys [J]. Mater. Sci. Eng., 2008, A473: 213
[14] Bai J, Raulot J M, Zhang Y D, et al. The effects of alloying element Co on Ni-Mn-Ga ferromagnetic shape memory alloys from first-principles calculations [J]. Appl. Phys. Lett., 2011, 98: 164103
[15] Soroka A, Sozinov A, Lanska N, et al. Composition and temperature dependence of twinning stress in non-modulated martensite of Ni-Mn-Ga-Co-Cu magnetic shape memory alloys [J]. Scr.Mater.,2018, 144: 52
[16] Rame? M, Heczko O, Sozinov A, et al. Magnetic properties of Ni-Mn-Ga-Co-Cu tetragonal martensites exhibiting magnetic shape memory effect [J]. Scr. Mater., 2018, 142: 61
[17] Sozinov A, Soroka A, Lanska N, et al. Temperature dependence of twinning and magnetic stresses in Ni46Mn24Ga22Co4Cu4 alloy with giant 12% magnetic field-induced strain [J]. Scr.Mater.,2017, 131: 33
[18] Sarkar S K, Sarita, Babu P D, et al. Giant magnetocaloric effect from reverse martensitic transformation in Ni-Mn-Ga-Cu ferromagnetic shape memory alloys [J]. J. Alloys Compd., 2016, 670: 281
[19] Li C M, Luo H B, Hu Q M, et al. Temperature dependence of elastic properties of Ni2+xMn1-xGa and Ni2Mn(Ga1-xAlx) from first principles [J]. Phys. Rev., 2011, 84B: 174117
[20] Li Z B, Zou N F, Sánchez-Valdés C F, et al. Thermal and magnetic field-induced martensitic transformation in Ni50Mn25-xGa25Cux (0≤x≤7) melt-spun ribbons [J]. J. Phys., 2016, 49D: 025002
[21] Dong G F, Cai W, Gao Z Y, et al. Effect of isothermal ageing on microstructure, martensitic transformation and mechanical properties of Ni53Mn23.5Ga18.5Ti5 ferromagnetic shape memory alloy [J]. Scr. Mater., 2008, 58: 647
[22] Gao Z Y, Dong G F, Cai W, et al. Martensitic transformation and mechanical properties in an aged Ni-Mn-Ga-Ti ferromagnetic shape memory alloy [J]. J. Alloys Compd., 2009, 481: 44
[23] Dong G F, Gao Z Y, Tan C L, et al. Phase transformation and magnetic properties of Ni-Mn-Ga-Ti ferromagnetic shape memory alloys [J]. J. Alloys Compd., 2010, 508: 47
[24] Gao Z Y, Chen B S, Meng X L, et al. Site preference and phase stability of Ti doping Ni-Mn-Ga shape memory alloys from first-principles calculations [J]. J. Alloys Compd., 2013, 575: 297
[25] Hafner J. Atomic-scale computational materials science [J]. Acta Mater., 2000, 48: 71
[26] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci., 1996, 6: 15
[27] Bl?chl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
[28] Kem G, Kresse G, Hafner J. Ab initio calculation of the lattice dynamics and phase diagram of boron nitride [J]. Phys. Rev., 1999, 59B: 8551
[29] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev., 1992, 45B: 13244
[30] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
[31] Li D, Wu D H, Zhu J W, et al. Synthesis of ultrafine Fe2O3 powders by decomposition of organic precursors and structural control by doping [J]. J. Mater. Sci. Lett., 2003, 22: 931
[32] Chen J, Li Y, Shang J X, et al. The effects of alloying elements Al and In on Ni-Mn-Ga shape memory alloys, from first principles [J]. Phys J. Condens. Matter, 2009, 21: 045506
[33] Raulot J M, Domain C, Guillemoles J F. Fe-doped CuInSe2: An ab initio study of magnetic defects in a photovoltaic material [J]. Phys. Rev., 2005, 71B: 035203
[34] Bai J, Raulot J M, Zhang Y D, et al. Defect formation energy and magnetic structure of shape memory alloys Ni-X-Ga (X=Mn, Fe, Co) by first principle calculation [J]. J. Appl. Phys., 2010, 108: 064904
[35] Brown P J, Crangle J, Kanomata T, et al. The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa [J]. Phys J. Condens. Matter, 2002, 14: 10159
[36] Cong D Y, Zetterstr?m P, Wang Y D, et al. Crystal structure and phase transformation in Ni53Mn25Ga22 shape memory alloy from 20 K to 473 K [J]. Appl. Phys. Lett., 2005, 87: 111906
[37] Velikokhatnyi O I, Naumov I I. Electronic structure and instability of Ni2MnGa [J]. Phys. Solid State, 1999, 41: 617
[38] Webster P J, Ramadan M R I. Magnetic order in palladium-based heusler alloys: Part 2: Pd2MnIn1-ySby [J]. J. Magn. Magn.Mater., 1979, 13: 301
[39] White R M. Quantum Theory of Magnetism [M]. Berlin Heidelberg: Springer-Verlag, 1983: 392
[40] Sato K, Dederichs P H, Katayama-Yoshida H, et al. Exchange interactions and Curie temperatures in diluted magnetic semiconductor [J]. Magn J. Magn. Mater., 2004, 272-276: 1983
[41] Chakrabarti A, Biswas C, Banik S, et al. Influence of Ni doping on the electronic structure of Ni2MnGa [J]. Phys. Rev., 2005, 72B: 073103
[42] Ayuela A, Enkovaara J, Nieminen R M. Ab initio study of tetragonal variants in Ni2MnGa alloy [J]. Phys J. Condens. Matter, 2002, 14: 5325
[43] Bungaro C, Rabe K M, Corso A D. First-principles study of lattice instabilities in ferromagnetic Ni2MnGa [J]. Phys. Rev., 2003, 68B: 134104
[44] Bl?chl P E, Jepsen O, Andersen O K. Improved tetrahedron method for Brillouin-zone integrations [J]. Phys. Rev., 1994, 49B: 16223
[45] Zayak A T, Entel P, Enkovaara J, et al. First-principles investigations of homogeneous lattice-distortive strain and shuffles in Ni2MnGa [J]. Phys J. Condens. Matter, 2003, 15: 159
[1] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[2] 董彩虹, 刘永利, 祁阳. 厚度对Bi薄膜表面特性和电学性质的影响[J]. 金属学报, 2018, 54(6): 935-942.
[3] 周刚, 叶荔华, 王皞, 徐东生, 孟长功, 杨锐. 六角结构金属中基面/柱面取向转变的孪晶路径及合金化效应的第一性原理研究[J]. 金属学报, 2018, 54(4): 603-612.
[4] 孙亚超, 朱明刚, 韩瑞, 石晓宁, 俞能君, 宋利伟, 李卫. 各向异性稀土永磁薄膜的磁黏滞性[J]. 金属学报, 2018, 54(3): 457-462.
[5] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
[6] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[7] 马殿国,王英敏,李艳辉,张伟. Co含量对熔体快淬Fe55-xCoxPt15B30合金的组织结构与磁性能的影响[J]. 金属学报, 2017, 53(5): 609-614.
[8] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[9] 白静,李泽,万震,赵骧. Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究[J]. 金属学报, 2017, 53(1): 83-89.
[10] 耿遥祥,王英敏,羌建兵,董闯,汪海斌,特古斯. Fe-B-Si-Nb块体非晶合金的成分设计与优化*[J]. 金属学报, 2016, 52(11): 1459-1466.
[11] 杜娇娇,李国建,王强,马永会,王慧敏,李萌萌. 强磁场下不同晶粒尺寸Fe薄膜生长模式演变及其对磁性能的影响*[J]. 金属学报, 2015, 51(7): 799-806.
[12] 张旭东,王绍青. Al3Sc和Al3Zr金属间化合物热力学性质的第一性原理计算[J]. 金属学报, 2013, 29(4): 501-505.
[13] 晁月盛,王莉,张艳辉,朱涵娴,罗丽平. 脉冲磁场处理Fe52Co34Hf7B6Cu1非晶的低温真空退火效应[J]. 金属学报, 2012, 48(6): 749-752.
[14] 刘荣明,岳明,张东涛,刘卫强,张久兴. SmCo5纳米颗粒和纳米薄片的制备、结构和磁性能[J]. 金属学报, 2012, 48(4): 475-479.
[15] 李定朋 宋晓艳 张哲旭 卢年端 乔印凯 刘雪梅. 单相Sm5Co2纳米晶合金的制备及其性能研究[J]. 金属学报, 2012, 48(10): 1248-1252.