Please wait a minute...
金属学报  2021, Vol. 57 Issue (9): 1184-1198    DOI: 10.11900/0412.1961.2021.00121
  综述 本期目录 | 过刊浏览 |
航空发动机热障涂层的CMAS腐蚀行为与防护方法
郭磊1,2,3(), 高远1, 叶福兴1,2,3, 张馨木1
1.天津大学 材料科学与工程学院 天津 300072
2.天津大学 天津市现代连接技术重点实验室 天津 300072
3.天津大学 先进陶瓷与加工技术教育部重点实验室 天津 300072
CMAS Corrosion Behavior and Protection Method of Thermal Barrier Coatings for Aeroengine
GUO Lei1,2,3(), GAO Yuan1, YE Fuxing1,2,3, ZHANG Xinmu1
1.School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
2.Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin 300072, China
3.Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
引用本文:

郭磊, 高远, 叶福兴, 张馨木. 航空发动机热障涂层的CMAS腐蚀行为与防护方法[J]. 金属学报, 2021, 57(9): 1184-1198.
Lei GUO, Yuan GAO, Fuxing YE, Xinmu ZHANG. CMAS Corrosion Behavior and Protection Method of Thermal Barrier Coatings for Aeroengine[J]. Acta Metall Sin, 2021, 57(9): 1184-1198.

全文: PDF(4942 KB)   HTML
摘要: 

热障涂层(thermal barrier coatings,TBCs)是航空发动机涡轮叶片的关键核心技术之一,可显著提高发动机工作温度,提升发动机推力和工作效率;但另一方面,更高的发动机工作温度使得叶片及其表面TBCs遭受严重的环境沉积物(主要成分为CaO、MgO、Al2O3和SiO2,简称CMAS)腐蚀,造成过早失效。CMAS腐蚀已成为限制TBCs工作温度和服役寿命的难题,抗腐蚀防护是目前TBCs领域研究的重点。本文首先综述了学者们对TBCs CMAS腐蚀问题的认识历程以及CMAS本身特性,再简述了TBCs的CMAS腐蚀机理,重点从TBCs的表面防护层设计、涂层成分改性、新型抗腐蚀涂层材料开发以及涂层结构设计等方面阐述了国际上目前TBCs的抗CMAS腐蚀防护方法,最后对TBCs的超高温环境应用及腐蚀防护发展方向进行了展望。

关键词 燃气涡轮发动机热障涂层CMAS腐蚀失效机理防护方法    
Abstract

Thermal barrier coating (TBC) is a core aero-engine turbine blade technology, which can significantly increase an engine's operating temperature, thrust, and working efficiency. Moreover, high-engine operating temperatures make aero-engine turbine blades and their TBCs suffer from severe corrosion of environmental deposits (the main components are CaO, MgO, Al2O3, and SiO2, together referred to as CMAS), causing premature failure. CMAS corrosion has become a key issue that limits the service temperature and lifetimes of TBCs, and its protection has been a research hotspot. In this paper, first, the scholars' understanding of CMAS corrosion to TBCs and the characteristics of CMAS were reviewed. Then, CMAS corrosion mechanisms for TBCs were briefly described. The protection methods of TBCs from CMAS corrosion were elaborated from the aspects of TBC's surface protection layer design, coating component modification, new CMAS-resistant coating materials development, and coating microstructure design. Finally, the application of TBCs in ultrahigh temperature environments and the development direction of corrosion protection were forecasted.

Key wordsgas turbine engine    thermal barrier coating    CMAS corrosion    failure mechanism    protection method
收稿日期: 2021-03-24     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金项目(51971156)
作者简介: 郭 磊,男,1986年生,副教授,博士
图1  不同制备方法的氧化钇部分稳定氧化锆(YSZ)涂层截面微观结构[34]
图2  高温下CMAS (CaO、MgO、Al2O3和SiO2)对热障涂层(TBCs)的破坏[13,43]
图3  CMAS作用下1250℃热处理4 h后镀Pt YSZ涂层的截面微观结构和Si元素EDS结果[54](a) Pt film covered region (b) EDS Si mapping result of Fig.3a(c) discontinuous Pt film covered region (d) EDS Si mapping result of Fig.3c
图4  热处理后Ti2AlC的截面和元素的EDS结果[72]
图5  LaPO4/YSZ涂层在1250℃下CMAS腐蚀2和10 h后的截面微观形貌[95]
图6  激光改性涂层后单层断面形貌和双层的表面及断面形貌(a, b) single layer fracture cross-sections (c, d) double layer surfaces (e, f) double layer fracture cross-sections
图7  激光处理后的涂层在1250℃下CMAS腐蚀0.5 h截面和断面形貌,以及腐蚀4 h的截面形貌[43](a) cross-sectional image (b) fracture cross-sectional image (c, d) low and high magnified images of sample, respectively
1 Guo H B, Gong S K, Xu H B. Progress in thermal barrier coatings for advanced aeroengines [J]. Mater. China, 2009, 28: 18
1 郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展 [J]. 中国材料进展, 2009, 28: 18
2 Hua J J, Zhang L P, Liu Z W, et al. Progress of research on the failure mechanism of thermal barrier coatings [J]. J. Inorg. Mater., 2012, 27: 680
3 Costa G, Harder B J, Wiesner V L, et al. Thermodynamics of reaction between gas-turbine ceramic coatings and ingested CMAS corrodents [J]. J. Am. Ceram. Soc., 2018, 102: 2948
4 Darolia R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects [J]. Int. Mater. Rev., 2013, 58: 315
5 Zhang X F, Zhou K S, Zhang J F, et al. Structure evolution of 7YSZ thermal barrier coating during thermal shock testing [J]. J. Inorg. Mater., 2015, 30: 1261
5 张小锋, 周克崧, 张吉阜等. 热震中7YSZ热障涂层结构演变 [J]. 无机材料学报, 2015, 30: 1261
6 Xiang J Y, Chen S H, Huang J H, et al. Thermal shock resistance of La2(Zr0.7Ce0.3)2O7 thermal barrier coating prepared by atmospheric plasma spraying [J]. Acta Metall. Sin., 2012, 48: 965
6 项建英, 陈树海, 黄继华等. 等离子喷涂La2(Zr0.7Ce0.3)2O7热障涂层的抗热震性能 [J]. 金属学报, 2012, 48: 965
7 Zhang Y J, Sun X F, Jin T, et al. Microstructure of air plasma sprayed YSZ nanostructured thermal barrier coating [J]. Acta Metall. Sin., 2003, 39: 395
7 张玉娟, 孙晓峰, 金 涛等. 大气等离子喷涂的YSZ纳米热障涂层的微观结构 [J]. 金属学报, 2003, 39: 395
8 Li M H, Sun X F, Zhang Z Y, et al. Oxidation and phase structure of the bond coat in EB-PVD thermal barrier coatings during thermal cycling [J]. Acta Metall. Sin., 2002, 38: 79
8 李美姮, 孙晓峰, 张重远等. EB-PVD热障涂层热循环过程中粘结层的氧化和相结构 [J]. 金属学报, 2002, 38: 79
9 Keshavarz M, Idris M H, Ahmad N. Mechanical properties of stabilized zirconia nanocrystalline EB-PVD coating evaluated by micro and nano indentation [J]. J. Adv. Ceram., 2013, 2: 333
10 Song W J, Lavallée Y, Hess K U, et al. Volcanic ash melting under conditions relevant to ash turbine interactions [J]. Nat. Commun., 2016, 7: 10795
11 Smialek J L, Archer F A, Garlick R G. The chemistry of saudi arabian sand: A deposition problem on helicopter turbine airfoils [A]. Advances in Synthesis and Processes [C]. Covina: SAMPE, 1992: 20
12 Borom M P, Johnson C A, Peluso L A. Role of environmental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings [J]. Surf. Coat. Technol., 1996, 86-87: 116
13 Mercer C, Faulhaber S, Evans A G, et al. A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration [J]. Acta Mater., 2005, 53: 1029
14 Smialek J L, Archer F A, Garlick R G. Turbine airfoil degradation in the persian gulf war [J]. JOM, 1994, 46(12): 39
15 Shifler D A, Choi S R. CMAS effects on ship gas-turbine components/materials [A]. ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition [C]. Oslo: American Society Mechanical Engineers, 2018: 1
16 Toriz F C, Thakker A B, Gupta S K. Thermal barrier coatings for jet engines [A]. ASME 1988 International Gas Turbine and Aeroengine Congress and Exposition [C]. Amsterdam: ASME, 1988: 1
17 Kim J, Dunn M G, Baran A J, et al. Deposition of volcanic materials in the hot sections of two gas turbine engines [J]. J. Eng. Gas. Turb. Power, 1993, 115: 641
18 Stott F H, De Wet D J, Taylor R. Degradation of thermal-barrier coatings at very high temperatures [J]. MRS Bull., 1994, 19: 46
19 Aygun A, Vasiliev A L, Padture N P, et al. Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits [J]. Acta Mater., 2007, 55: 6734
20 Gledhill A. Thermal barrier coatings chemically and mechanically resistant to high temperature attack by molten ashes [D]. Columbus, Ohio: The Ohio State University, 2011
21 Levi C G, Hutchinson J W, Vidal-Sétif M H, et al. Environmental degradation of thermal-barrier coatings by molten deposits [J]. MRS Bull., 2012, 37: 932
22 Poerschke D L, Jackson R W, Levi C G. Silicate deposit degradation of engineered coatings in gas turbines: Progress toward models and materials solutions [J]. Annu. Rev. Mater. Res., 2017, 47: 297
23 Clarke D R, Oechsner M, Padture N P. Thermal barrier coatings for more efficient gas-turbine engines [J]. MRS Bull., 2012, 37: 891
24 Naraparaju R, Chavez J J G, Schulz U, et al. Interaction and infiltration behavior of Eyjafjallajökull, Sakurajima volcanic ashes and a synthetic CMAS containing FeO with/in EB-PVD ZrO2-65wt% Y2O3 coating at high temperature [J]. Acta Mater., 2017, 136: 164
25 Zhang B P, Song W J, Guo H B. Wetting, infiltration and interaction behavior of CMAS towards columnar YSZ coatings deposited by plasma spray physical vapor [J]. J. Eur. Ceram. Soc., 2018, 38: 3564
26 Dean J, Taltavull C, Clyne T W. Influence of the composition and viscosity of volcanic ashes on their adhesion within gas turbine aeroengines [J]. Acta Mater., 2016, 109: 8
27 Poerschke D L, Barth T L, Levi C G. Equilibrium relationships between thermal barrier oxides and silicate melts [J]. Acta Mater., 2016, 120: 302
28 Wiesner V L, Bansal N P. Mechanical and thermal properties of calcium-magnesium aluminosilicate (CMAS) glass [J]. J. Eur. Ceram. Soc., 2015, 35: 2907
29 Jackson R W, Zaleski E M, Poerschke D L, et al. Interaction of molten silicates with thermal barrier coatings under temperature gradients [J]. Acta Mater., 2015, 89: 396
30 Song W J, Lavallee Y, Wadsworth F B, et al. Wetting and spreading of molten volcanic ash in jet engines [J]. J. Phys. Chem. Lett., 2017, 8: 1878
31 Li B T, Chen Z, Zheng H Z, et al. Wetting mechanism of CMAS melt on YSZ surface at high temperature: First-principles calculation [J]. Appl. Surf. Sci., 2019, 483: 811
32 Guo L, Xin H, Li Y Y, et al. Self-crystallization characteristics of calcium-magnesium-alumina-silicate (CMAS) glass under simulated conditions for thermal barrier coating applications [J]. J. Eur. Ceram. Soc., 2020, 40: 5683
33 Xu S M, Zhang X F, Liu M, et al. Oxidation resistance of Al-modified APS 7YSZ thermal barrier coating [J]. Mater. Rev., 2019, 33: 283
33 许世鸣, 张小锋, 刘 敏等. APS制备7YSZ热障涂层镀铝改性的抗氧化性 [J]. 材料导报, 2019, 33: 283
34 Wang X, Zhen Z, Huang G H, et al. Thermal cycling of EB-PVD TBCs based on YSZ ceramic coat and diffusion aluminide bond coat [J]. J. Alloys Compd., 2021, 873: 159720
35 Sampath S, Schulz U, Jarligo M O, et al. Processing science of advanced thermal-barrier systems [J]. MRS Bull., 2012, 37: 903
36 Hua Y F, Pan W, Li Z X, et al. Research progress of hot corrosion-resistance for thermal barrier coatings [J]. Rare Metal Mater. Eng., 2013, 42: 1976
36 华云峰, 潘 伟, 李争显等. 热障涂层抗腐蚀研究进展 [J]. 稀有金属材料与工程, 2013, 42: 1976
37 Zhang X F, Zhou K S, Song J B, et al. Deposition and CMAS corrosion mechanism of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition [J]. J. Inorg. Mater., 2015, 30: 287
37 张小锋, 周克崧, 宋进兵等. 等离子喷涂-物理气相沉积7YSZ热障涂层沉积机理及其CMAS腐蚀失效机制 [J]. 无机材料学报, 2015, 30: 287
38 Li D X, Jiang P, Gao R H, et al. Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion [J]. J. Adv. Ceram., 2021, 10: 551
39 Krämer S, Faulhaber S, Chambers M, et al. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration [J]. Mater. Sci. Eng., 2008, A490: 26
40 Wu J, Guo H B, Gao Y Z, et al. Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits [J]. J. Eur. Ceram. Soc., 2011, 31: 1881
41 Steinke T, Sebold D, Mack D E, et al. A novel test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions [J]. Surf. Coat. Technol., 2010, 205: 2287
42 Nicholls J R, Deakin M J, Rickerby D S. A comparison between the erosion behaviour of thermal spray and electron beam physical vapour deposition thermal barrier coatings [J]. Wear, 1999, 233-235: 352
43 Yan Z, Guo L, Li Z H, et al. Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings [J]. Corros. Sci., 2019, 157: 450
44 Li L, Hitchman N, Knapp J. Failure of thermal barrier coatings subjected to CMAS attack [J]. J. Therm. Spray Technol., 2010, 19: 148
45 Krämer S, Yang J, Levi C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2(CMAS) deposits [J]. J. Am. Ceram. Soc., 2006, 89: 3167
46 Peng H, Wang L, Guo L, et al. Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits [J]. Prog. Nat. Sci: Mater. Int., 2012, 22: 461
47 Wu J, Guo H B, Abbas M, et al. Evaluation of plasma sprayed YSZ thermal barrier coatings with the CMAS deposits infiltration using impedance spectroscopy [J]. Prog. Nat. Sci: Mater. Int., 2012, 22: 40
48 Yang S J, Peng H, Guo H B. Failure and protection of thermal barrier coating under CMAS attack [J]. J. Aeron. Mater., 2018, 38: 43
48 杨姗洁, 彭 徽, 郭洪波. 热障涂层在CMAS环境下的失效与防护 [J]. 航空材料学报, 2018, 38: 43
49 Rai A K, Bhattacharya R S, Wolfe D E, et al. CMAS-resistant thermal barrier coatings (TBC) [J]. Int. J. Appl. Ceram. Technol., 2010, 7: 662
50 He Q, Wang R J, Zou H, et al. Protective effects of 8YSZ TBCs with different microstructures against CMAS deposits [J]. China Surf. Eng., 2016, 29: 86
50 何 箐, 汪瑞军, 邹 晗等. 不同结构8YSZ热障涂层对CMAS沉积物的防护作用 [J]. 中国表面工程, 2016, 29: 86
51 Hasz W C, Johnson C A, Borom M P. Protection of thermal barrier coating by a sacrificial surface coating [P]. USA Pat, 5660885, 1997
52 Hasz W C, Borom M P, Johnson C A. Protection of thermal barrier coating with an impermeable barrier coating [P]. USA Pat, 5871820, 1999
53 Hasz W C, Borom M P, Johnson C A. Protected thermal barrier coating composite with multiple coatings [P]. USA Pat, 6261643, 2001
54 Wang L, Guo L, Li Z M, et al. Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium-magnesium-alumina-silicate (CMAS) attack [J]. Ceram. Int., 2015, 41: 11662
55 Liu H, Cai J, Zhu J H. CMAS (CaO-MgO-Al2O3-SiO2) resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers [J]. Ceram. Int., 2018, 44: 452
56 Zhang X F, Zhou K S, Wei X, et al. In situ synthesis of α-alumina layer at top yttrium-stabilized zirconia thermal barrier coatings for oxygen barrier [J]. Ceram. Int., 2014, 40: 12703
57 Zhang X F, Zhou K S, Xu W, et al. In situ synthesis of α-alumina layer on thermal barrier coating for protection against CMAS (CaO-MgO-Al2O3-SiO2) corrosion [J]. Surf. Coat. Technol., 2015, 261: 54
58 Zhang X F, Zhou K S, Xu W, et al. Reaction mechanism and thermal insulation property of Al-deposited 7YSZ thermal barrier coating [J]. J. Mater. Sci. Technol., 2015, 31: 1006
59 Zhang X F, Zhou K S, Liu M, et al. Enhanced properties of Al-modified EB-PVD 7YSZ thermal barrier coatings [J]. Ceram. Int., 2016, 42: 13969
60 Zhang X F, Zhou K S, Liu M, et al. Adsorbability and spreadability of calcium-magnesium-alumino-silicate (CMAS) on Al-modified 7YSZ thermal barrier coating [J]. Ceram. Int., 2016, 42: 19349
61 Zhang X F, Zhou K S, Liu, M, et al. Thermal shock analysis of surface Al-modified 7YSZ nano-thermal barrier coating [J]. J. Inorg. Mater., 2017, 32: 973
61 张小锋, 周克崧, 刘 敏等. 镀铝表面改性7YSZ纳米热障涂层热震性能分析 [J]. 无机材料学报, 2017, 32: 973
62 Guo Y Q, Wei L L, He Q, et al. PS-PVD alumina overlayer on thermal barrier coatings against CMAS attack [J]. J. Therm. Spray Technol., 2021, 30: 864
63 Ye F X, Yang W Q, Yan S, et al. The wettability and corrosion behaviors of CMAS on M-YTaO4 at 1350oC [J]. J. Therm. Spray Technol., 2021, 30: 873
64 Guo L, Li G, Gan Z L. Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications [J]. J. Adv. Ceram., 2021, 10: 472
65 Wei X D, Hou G L, Zhao D, et al. Recent research progress on oxide doped YSZ thermal barrier coatings [J]. Surf. Technol., 2020, 49: 92
65 魏晓东, 侯国梁, 赵 荻等. 氧化物掺杂YSZ热障涂层的最新研究进展 [J]. 表面技术, 2020, 49: 92
66 Shi Y, Li B W, Zhao M, et al. Growth of diopside crystals in CMAS glass-ceramics using Cr2O3 as a nucleating agent [J]. J. Am. Ceram. Soc., 2018, 101: 3968
67 Hsiang H I, Yung S W, Wang C C. Crystallization, densification and dielectric properties of CaO-MgO-Al2O3-SiO2 glass with ZrO2 as nucleating agent [J]. Mater. Res. Bull., 2014, 60: 730
68 Zhang X F, Wei H Y, Ouyang S L, et al. Effect of composite nucleation agents on microstructures and mechanical properties of CaO-MgO-Al2O3-SiO2 glass ceramics [J]. Mater. Rev., 2015, 29: 112
68 张雪峰, 魏海燕, 欧阳顺利等. 复合形核剂对CaO-MgO-Al2O3-SiO2系玻璃陶瓷微观结构与力学性质的影响 [J]. 材料导报, 2015, 29: 112
69 Webster R I, Opila E J. The effect of TiO2 additions on CaO-MgO-Al2O3-SiO2 (CMAS) crystallization behavior from the melt [J]. J. Am. Ceram. Soc., 2019, 102: 3354
70 Fang H J, Wang W Z, Huang J B, et al. Corrosion resistance and thermal-mechanical properties of ceramic pellets to molten calcium-magnesium-alumina-silicate (CMAS) [J]. Ceram. Int., 2019, 45: 19710
71 Guo L, Yan Z, Wang X H, et al. Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings [J]. Ceram. Int., 2019, 45: 7627
72 Yan Z, Guo L, Zhang Z, et al. Versatility of potential protective layer material Ti2AlC on resisting CMAS corrosion to thermal barrier coatings [J]. Corros. Sci., 2020, 167: 108532
73 Gong W B, Li R W, Li Y P, et al. Stabilization and corrosion resistance under high-temperature of nanostructured CeO2/ZrO2-Y2O3 thermal barrier coating [J]. Acta Metall. Sin., 2013, 49: 593
73 宫文彪, 李任伟, 李于朋等. CeO2/ZrO2-Y2O3纳米结构热障涂层的高温稳定性及耐腐蚀性能 [J]. 金属学报, 2013, 49: 593
74 Guo S Q, Feng Y B, He Y, et al. Materials and fabrication technique of thermal barrier coatings for future aeroengines [J]. Surf. Technol., 2012, 41: 119
74 郭双全, 冯云彪, 何 勇等. 未来航空发动机热障涂层材料及制备技术 [J]. 表面技术, 2012, 41: 119
75 Vassen R, Cao X Q, Tietz F, et al. Zirconates as new materials for thermal barrier coatings [J]. J. Am. Ceram. Soc., 2000, 83: 2023
76 Ma W, Mack D, Malzbender J, et al. Yb2O3 and Gd2O3 doped strontium zirconate for thermal barrier coatings [J]. J. Eur. Ceram. Soc., 2008, 28: 3071
77 Ma W, Mack D E, Vaßen R, et al. Perovskite-type strontium zirconate as a new material for thermal barrier coatings [J]. J. Am. Ceram. Soc., 2008, 91: 2630
78 Guo L, Li M Z, Yang C X, et al. Calcium-magnesium-alumina-silicate (CMAS) resistance property of BaLn2Ti3O10 (Ln = La, Nd) for thermal barrier coating applications [J]. Ceram. Int., 2017, 43: 10521
79 Yu J X, Wang C M, Guo L, et al. Hot corrosion behavior of BaLa2Ti3O10 exposed to calcium-magnesium-alumina-silicate at elevated temperatures [J]. Ceram. Int., 2018, 44: 10220
80 Wan C L, Qu Z X, He Y, et al. Ultralow thermal conductivity in highly anion-defective aluminates [J]. Phys. Rev. Lett., 2008, 101: 085901
81 Wei L L, Guo L, Li M Z, et al. Calcium-magnesium-alumina-silicate (CMAS) resistant Ba2REAlO5 (RE = Yb, Er, Dy) ceramics for thermal barrier coatings [J]. J. Eur. Ceram. Soc., 2017, 37: 4991
82 Yu J X, Wang C M, Guo L, et al. Hot corrosion behavior of Ba2DyAlO5 exposed to calcium-magnesium-alumina-silicate at 1300oC and 1350°C [J]. Vacuum, 2018, 155: 307
83 Yang L X, Li W S, An G S, et al. Corrosion properties of LZO/8YSZ double ceramic thermal barrier coatings [J]. China Surf. Eng., 2020, 33: 91
83 杨乐馨, 李文生, 安国升等. LZO/8YSZ双陶瓷热障涂层CMAS的腐蚀性能 [J]. 中国表面工程, 2020, 33: 91
84 Tang C H, Li G R, Liu M J, et al. Sintering-stiffening behavior of plasma sprayed La2Zr2O7 thermal barrier coatings during high temperature exposure [J]. China Surf. Eng., 2020, 33: 119
84 唐春华, 李广荣, 刘梅军等. 等离子喷涂La2Zr2O7热障涂层高温烧结的硬化行为 [J]. 中国表面工程, 2020, 33: 119
85 Zhu R B, Zou J P, Mao J, et al. Fabrication and growing kinetics of highly dispersed gadolinium zirconate nanoparticles [J]. Res. Appl. Mater. Sci., 2019, 1: 28
86 Krämer S, Yang J, Levi C G. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts [J]. J. Am. Ceram. Soc., 2008, 91: 576
87 Wang C M, Guo L, Zhang Y, et al. Enhanced thermal expansion and fracture toughness of Sc2O3-doped Gd2Zr2O7 ceramics [J]. Ceram. Int., 2015, 41: 10730
88 Guo L, Zhang Y, Zhao X X, et al. Thermal expansion and fracture toughness of (RE0.9Sc0.1)2Zr2O7 (RE = La, Sm, Dy, Er) ceramics [J]. Ceram. Int., 2016, 42: 583
89 Guo L, Li M Z, Zhang Y, et al. Improved toughness and thermal expansion of non-stoichiometry Gd2 - xZr2 + xO7 + x / 2 ceramics for thermal barrier coating application [J]. J. Mater. Sci. Technol., 2016, 32: 28
90 Wang C M, Guo L, Ye F X. LaPO4 as a toughening agent for rare earth zirconate ceramics [J]. Mater. Des., 2016, 111: 389
91 Li M Z, Cheng Y X, Guo L, et al. Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate (CMAS) resistance [J]. J. Eur. Ceram. Soc., 2017, 37: 3425
92 Guo L, Li M Z, Cheng Y X, et al. Plasma sprayed nanostructured GdPO4 thermal barrier coatings: Preparation microstructure and CMAS corrosion resistance [J]. J. Am. Ceram. Soc., 2017, 100: 4209
93 Guo L, Yan Z, Li Z H, et al. GdPO4 as a novel candidate for thermal barrier coating applications at elevated temperatures [J]. Surf. Coat. Technol., 2018, 349: 400
94 Wang F, Guo L, Wang C M, et al. Calcium-magnesium-alumina-silicate (CMAS) resistance characteristics of LnPO4 (Ln = Nd, Sm, Gd) thermal barrier oxides [J]. J. Eur. Ceram. Soc., 2017, 37: 289
95 Guo L, Yan Z, Yu Y, et al. CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1250oC-1350oC [J]. Corros. Sci., 2019, 154: 111
96 Zhang C L, Fei J M, Guo L, et al. Thermal cycling and hot corrosion behavior of a novel LaPO4/YSZ double-ceramic-layer thermal barrier coating [J]. Ceram. Int., 2018, 44: 8818
97 Guo L, Yan Z, Dong X, et al. Composition-microstructure-mechanical property relationships and toughening mechanisms of GdPO4-doped Gd2Zr2O7 composites [J]. Composites, 2019, 161B: 473
98 Guo L, Li M Z, He S X, et al. Preparation and hot corrosion behavior of plasma sprayed nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings [J]. J. Alloys Compd., 2017, 698: 13
99 Guo L, Xin H, Zhang Z, et al. Microstructure modification of Y2O3 stabilized ZrO2 thermal barrier coatings by laser glazing and the effects on the hot corrosion resistance [J]. J. Adv. Ceram., 2020, 9: 232
100 Guo L, Xin H, Zhang X M, et al. Effects of laser surface modification on phase stability and microstructures of thermal barrier coatings in V2O5 molten salt [J]. Surf. Technol., 2020, 49: 41
100 郭 磊, 辛 会, 张馨木等. 激光表面改性对熔盐环境下热障涂层相稳定性和微观结构的影响 [J]. 表面技术, 2020, 49: 41
101 Kang Y X, Bai Y, Du G Q, et al. High temperature wettability between CMAS and YSZ coating with tailored surface microstructures [J]. Mater. Lett., 2018, 229: 40
102 Huang Z M, Zhou M, Li C, et al. Femtosecond laser on the surface of PTFE [J]. J. Funct. Mater., 2010, 41: 2163
102 黄宗明, 周 明, 李 琛等. 飞秒激光对聚四氟乙烯表面的影响 [J]. 功能材料, 2010, 41: 2163
103 Liang F, Lehr J, Danielczak L, et al. Robust non-wetting PTFE surfaces by femtosecond laser machining [J]. Int. J. Mol. Sci., 2014, 15: 13681
104 Guo L, Gao Y, Xin H. Laser modification parameters optimization and structural design of thermal barrier coatings [J]. Acta Aeronaut. Astronaut. Sin., 2020: 1, doi: 10.7527/S1000-6893.2020.24114
104 郭 磊, 高 远, 辛 会. 热障涂层的激光表面改性参数优化和结构设计 [J]. 航空学报, 2020: 1, doi: 10.7527/S1000-6893.2020.24114
105 Chen L Q, Gong S K, Xu H B. Influence of vertical cracks on failure mechanism of EB-PVD thermal barrier coatings during thermal cycling [J]. Acta. Metall. Sin., 2005, 41: 979
105 陈立强, 宫声凯, 徐惠彬. 垂直裂纹对EB-PVD热障涂层热循环失效模式的影响 [J]. 金属学报, 2005, 41: 979
106 Ma W, Gong S K, Xu H B, et al. On improving the phase stability and thermal expansion coefficients of lanthanum cerium oxide solid solutions [J]. Scr. Mater., 2006, 54: 1505
107 Cao X Q, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings [J]. J. Eur. Ceram. Soc., 2004, 24: 1
108 Gao L H, Guo H B, Gong S K, et al. Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium-magnesium-alumina-silicate penetration [J]. J. Eur. Ceram. Soc., 2014, 34: 2553
109 Dilba D. We've got protection covered [R]. AERO REPORT. Germany: MTU Aero Engines, 2017
[1] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[2] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[3] 刘汉青, 何超, 黄志勇, 王清远. TC17合金超高周疲劳裂纹萌生机理[J]. 金属学报, 2017, 53(9): 1047-1054.
[4] 侯晓光,王恩刚,许秀杰,邓安元,王万林. 弯月面热障涂层方法对结晶器传热及铸坯振痕形貌的影响[J]. 金属学报, 2015, 51(9): 1145-1152.
[5] 宫文彪,李任伟,李于朋,孙大千,王文权. CeO2/ZrO2-Y2O3纳米结构热障涂层的高温稳定性及耐腐蚀性能[J]. 金属学报, 2013, 49(5): 593-598.
[6] 项建英 陈树海 黄继华 赵兴科 张华. 等离子喷涂La2(Zr0.7Ce0.3)2O7热障涂层的抗热震性能[J]. 金属学报, 2012, 48(8): 965-970.
[7] 陈立强; 宫声凯; 徐惠彬 . 垂直裂纹对EB-PVD热障涂层热循环失效模式的影响[J]. 金属学报, 2005, 41(9): 979-984 .
[8] 武颖娜; 柯培玲; 孙超; 华伟刚; 王福会; 闻立时 . 爆炸喷涂制备NiCrAlY/NiAl/ZrO2-Y2O3体系热障涂层[J]. 金属学报, 2004, 40(5): 541-545 .
[9] 张玉娟; 孙晓峰; 金涛; 赵乃仁; 管恒荣; 胡壮麒 . 大气等离子喷涂的YSZ纳米热障涂层的微观结构[J]. 金属学报, 2003, 39(4): 395-398 .
[10] 管恒荣; 李美姮; 孙晓峰; 张重远; 胡望宇; 宫声凯; 金涛; 赵乃仁; 胡壮麒 . 高温合金热障涂层的氧化和失效研究[J]. 金属学报, 2002, 38(11): 1133-1140 .
[11] 武颖娜; 华伟刚; 纪爱玲; 王福会; 孙超; 闻立时 . 爆炸喷涂技术制备热障涂层的研究[J]. 金属学报, 2002, 38(10): 1082-1086 .
[12] 李美姮; 孙晓峰; 张重远; 宫声凯; 胡望宇 . EB-PVD热障涂层热循环过程中粘结层的氧化和相结构[J]. 金属学报, 2002, 38(1): 79-83 .
[13] 郭洪波; 徐惠彬; 宫声凯; 刘福顺 . 基板温度对EB-PVD梯度热障涂层的微观结构和性能的影响[J]. 金属学报, 2001, 37(9): 997-1000 .
[14] 郭洪波; 徐惠彬; 宫声凯; 刘福顺 . EB-PVD梯度热障涂层的热循环失效机制[J]. 金属学报, 2001, 37(2): 151-155 .
[15] 郭洪波; 宫声凯 . EB-PVD梯度热障涂层的制备及其热疲劳性能[J]. 金属学报, 2000, 36(7): 703-706 .