Please wait a minute...
金属学报  2021, Vol. 57 Issue (7): 921-927    DOI: 10.11900/0412.1961.2020.00311
  研究论文 本期目录 | 过刊浏览 |
NiTi-NbTi原位复合材料的Lüders带型变形和载荷转移行为
姜江1, 郝世杰2, 姜大强2, 郭方敏2, 任洋3, 崔立山2()
1.江西省科学院 江西省铜钨新材料重点实验室 南昌 330096
2.中国石油大学(北京) 新能源与材料学院 北京 102249
3.X -ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
Lüders-Like Deformation and Stress Transfer Behavior in an In Situ NiTi-NbTi Composite
JIANG Jiang1, HAO Shijie2, JIANG Daqiang2, GUO Fangmin2, REN Yang3, CUI Lishan2()
1.Jiangxi Key Laboratory of Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330096, China
2.College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
3.X -ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
引用本文:

姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-NbTi原位复合材料的Lüders带型变形和载荷转移行为[J]. 金属学报, 2021, 57(7): 921-927.
Jiang JIANG, Shijie HAO, Daqiang JIANG, Fangmin GUO, Yang REN, Lishan CUI. Lüders-Like Deformation and Stress Transfer Behavior in an In Situ NiTi-NbTi Composite[J]. Acta Metall Sin, 2021, 57(7): 921-927.

全文: PDF(4803 KB)   HTML
摘要: 

采用电弧熔炼、锻造和拔丝方法原位合成了一种高Nb含量的NiTi-NbTi记忆合金复合材料。TEM显微分析显示,在材料内部纳米尺度的NbTi和NiTi纤维沿丝材轴向交替分布,NbTi纤维体积分数高达约70%。通过同步辐射高能X射线原位拉伸实验研究了复合材料的变形机制。结果显示,虽然NiTi体积分数仅约30%,但复合材料的变形仍受NiTi的应力诱发相变控制。在加载初期,复合材料先发生均匀变形,并且在拉伸曲线出现屈服平台之前,NiTi已发生均匀相变。当平台出现之后,NiTi转而发生Lüders带型相变,进而诱发NbTi也随之发生Lüders带型变形,使整个复合材料都展现Lüders带型变形。Lüders带前沿存在载荷转移现象,载荷由正在发生相变的B2-NiTi同时转移到NbTi相及之前在均匀相变过程中形成的B19'-TiNi马氏体相。

关键词 NiTi-NbTi复合材料形状记忆合金Lüders带型变形    
Abstract

A previous study proposed a novel Nb nanowire-reinforced NiTi shape memory alloy composite possessing high yield strength (> 1.6 GPa), low apparent Young's modulus (< 30 GPa), and large quasilinear elastic strain (> 6%). This composite occupies a unique spot on the chart of the mechanical properties of conventional bulk metals, ceramics, and polymer materials. It can be used in dental braces, cardiac pacemakers, implantable devices, and flexible medical instruments. Furthermore, this study suggested that when the NiTi shape memory alloy was adopted as a matrix, the stress-induced martensitic transformation of NiTi would help the embedded nanowire reinforcement to exhibit inherent high strength. Ultralarge elastic strain (4%-7%) of Nb nanowires has been observed in these NiTi-Nb composites. Tailoring superior structural-functional properties by combining a shape memory alloy with other nanoreinforcements have recently gained research attention in materials science research focus. However, in most previous works, the volume fractions of the embedded Nb nanowires were not > 25%. It is reasonable to assume that an increase in the volume fraction of Nb nanowire would further improve the strength of the composite, and make the mechanical performance of the bulk composite much closer to that of a single nano reinforcement. As a result, a study on the high volume fraction of an Nb nanowire-reinforced NiTi shape memory alloy composite is crucial. Herein, an in situ NiTi-NbTi shape memory alloy composite with a high Nb volume fraction was prepared through arc melting, forging, and wire drawing. The microscopic analysis showed that NbTi and NiTi nanofibers were alternatively distributed in the composite along the wire axial direction. In situ synchrotron X-ray diffraction measurements were carried out to study the deformation mechanism of the composite. Results revealed that although the volume fraction of NiTi was only about 30%, the deformation of the composite was mainly controlled by the martensitic transformation of NiTi. The prepared composite showed a homogenous deformation and homogenous martensitic phase transformation before the yielding. It then exhibited Lüders-like deformation that originated from the Lüders-like stress-induced martensitic phase transformation in the region of yielding. Stress transfer was observed in the Lüders band front from the transforming B2-NiTi phase to the NbTi phase and simutaneously to the previously existing B19'-NiTi martensite phase generated during the homogenous martensitic phase transformation process.

Key wordsNiTi-NbTi composite    shape memory alloy    Lüders-like deformation
收稿日期: 2020-08-19     
ZTFLH:  TB34  
基金资助:国家自然科学基金项目(51731010、51861011、51971243、51971244)
作者简介: 姜 江,男,1981年生,副研究员,博士
图1  NiTi-NbTi复合材料丝材的纵截面显微组织的TEM明场像和HAADF-STEM像
图2  NiTi-NbTi复合材料高能X射线同步辐射原位拉伸衍射谱
图3  复合材料丝材原位拉伸的应力-应变曲线以及B2母相峰的面积随宏观应变的演变
图4  TiNi-NbTi复合材料的均匀变形和Lüders带型变形示意图
图5  复合材料中NbTi相、B2母相(用P表示)以及马氏体相(Ⅱ、Ⅲ区相变形成的马氏体分别用M1、M2表示)的弹性晶格应变(d-spacing strain)随宏观加载应变的演变曲线。
图6  Lüders带前沿扫过X射线探测区前、后样品变化示意图
图7  Lüders带前沿的载荷转移示意图(a) stress relax due to the (P-M2) stress induced martensitic transformation, and the increase of stress in NbTi phase(b) stress relax due to the (P-M2) stress induced martensitic transformation, and the increase of stress in M1 martensite
1 Niu J G, Xiao W. The lattice instability induced by Ti-site Ni in B2 austenite in TiNi alloy [J]. Acta Metall. Sin., 2019, 55: 267
1 牛建钢, 肖 伟. TiNi合金B2奥氏体中Ti位Ni诱导的晶格失稳 [J]. 金属学报, 2019, 55: 267
2 Zhao Y C, Sun H, Li C L, et al. High temperature deformation behavior of high strength and toughness Ti-Ni base bulk metallic glass composites [J]. Acta Metall. Sin., 2018, 54: 1818
2 赵燕春, 孙 浩, 李春玲等. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为 [J]. 金属学报, 2018, 54: 1818
3 Wei Z Z, Ma X, Zhang X P. Topological modelling of the B2-B19' martensite transformation crystallography in NiTi alloy [J]. Acta Metall. Sin., 2018, 54: 1461
3 韦昭召, 马 骁, 张新平. NiTi合金B2-B19'马氏体相变晶体学的拓扑模拟研究 [J]. 金属学报, 2018, 54: 1461
4 He Z R, Wu P Z, Liu K K, et al. Microstructure, phase transformation and shape memory behavior of chilled Ti-47Ni alloy ribbons [J]. Acta Metall. Sin., 2018, 54: 1157
4 贺志荣, 吴佩泽, 刘康凯等. 激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为 [J]. 金属学报, 2018, 54: 1157
5 Yang C G, Shan J G, Ren J L. Phase transformation temperature control of weld metal of laser welded TiNi shape memory alloy joint [J]. Acta Metall. Sin., 2013, 49: 199
5 杨成功, 单际国, 任家烈. TiNi形状记忆合金激光焊接焊缝金属相变温度的控制 [J]. 金属学报, 2013, 49: 199
6 Ke C B, Cao S S, Ma X, et al. Phase field simulation of auto-catalytic growth effect of coherent Ni4Ti3 precipitate in NiTi shape memory alloy [J]. Acta Metall. Sin., 2013, 49: 115
6 柯常波, 曹姗姗, 马 骁等. NiTi形状记忆合金中Ni4Ti3共格沉淀相自催化生长效应的相场模拟 [J]. 金属学报, 2013, 49: 115
7 Zhu Y G, Zhang Y, Zhao D. Micromechanical constitutive model for phase transformation of NiTi polycrystal SMA [J]. Acta Metall. Sin., 2013, 49: 123
7 朱祎国, 张 杨, 赵 聃. 多晶NiTi形状记忆合金相变的细观力学本构模型 [J]. 金属学报, 2013, 49: 123
8 Du H F, Zeng P, Zhao J Q, et al. In situ multi-fields investigation on instability and transformation localization of martensitic phase transformation in NiTi alloys [J]. Acta Metall. Sin., 2013, 49: 17
8 杜泓飞, 曾 攀, 赵加清等. NiTi合金中马氏体相变失稳与局部化的原位多场研究 [J]. 金属学报, 2013, 49: 17
9 Zhang H B, Jin W, Yang R. 3D finite element simulation of pull-out force of TiNiFe shape memory pipe coupling with inner convex [J]. Acta Metall. Sin., 2012, 48: 1520
9 张慧博, 金 伟, 杨 锐. 内脊型TiNiFe记忆合金管接头拉脱力的三维有限元模拟 [J]. 金属学报, 2012, 48: 1520
10 Yang C G, Shan J G, Ren J L. Study on shape recovery temperature of TiNi alloy laser weld joint [J]. Acta Metall. Sin., 2012, 48: 513
10 杨成功, 单际国, 任家烈. TiNi合金激光焊接接头形状恢复温度的研究 [J]. 金属学报, 2012, 48: 513
11 He Z R, Wang Q, Shao D W. Effect of aging on microstructure and superelasticity in Ti-50.8Ni-0.3Cr shape memory alloy [J]. Acta Metall. Sin., 2012, 48: 56
11 贺志荣, 王 启, 邵大伟. 时效对Ti-50.8Ni-0.3Cr形状记忆合金组织和超弹性的影响 [J]. 金属学报, 2012, 48: 56
12 Jiang H J, Ke C B, Cao S S, et al. Preparation of nano-sized SiC reinforced NiTi shape memory composites and their mechanical properties and damping behavior [J]. Acta Metall. Sin., 2011, 47: 1105
12 江鸿杰, 柯常波, 曹姗姗等. 纳米SiC颗粒增强NiTi形状记忆复合材料制备及其力学性能和阻尼行为 [J]. 金属学报, 2011, 47: 1105
13 Ke C B, Ma X, Zhang X P. Phase field simulation of effects of pores on B2-R phase transformation in NiTi shape memory alloy [J]. Acta Metall. Sin., 2011, 47: 129
13 柯常波, 马 骁, 张新平. 孔隙对NiTI形状记忆合金中B2-R相变影响的相场模拟 [J]. 金属学报, 2011, 47: 129
14 Yang J, He Z R, Wang F, et al. Effect of Cr addition on transformation and cyclic deformation characteristics of Ti-Ni shape memory alloy [J]. Acta Metall. Sin., 2011, 47: 157
14 杨 军, 贺志荣, 王 芳等. Cr掺杂对Ti-Ni形状记忆合金相变和循环形变特性的影响 [J]. 金属学报, 2011, 47: 157
15 Ke C B, Ma X, Zhang X P. Phase field simulation of the effect of applied external stress on growth kinetics of coherent Ni4Ti3 precipitate in NiTi alloy [J]. Acta Metall. Sin., 2010, 46: 921
15 柯常波, 马 骁, 张新平. 外应力对NiTi合金中共格Ni4Ti3沉淀相长大行为影响的相场法模拟 [J]. 金属学报, 2010, 46: 921
16 Wang Q, He Z R, Wang Y S, et al. Effects of annealing temperature and stress-strain cycle on superelasticity of Ti-Ni-Cr shape memory alloy [J]. Acta Metall. Sin., 2010, 46: 800
16 王 启, 贺志荣, 王永善等. 退火温度和应力-应变循环对Ti-Ni-Cr形状记忆合金超弹性的影响 [J]. 金属学报, 2010, 46: 800
17 Yamada Y, Taya M, Watanabe R. Strengthening of metal matrix composite by shape memory effect [J]. Mater. Trans., JIM, 1993, 34: 254
18 Mizuuchi K, Inoue K, Hamada K, et al. Processing of TiNi SMA fiber reinforced AZ31 Mg alloy matrix composite by pulsed current hot pressing [J]. Mater. Sci. Eng., 2004, A367: 343
19 Jang B K, Kishi T. Adhesive strength between TiNi fibers embedded in CFRP composites [J]. Mater. Lett., 2005, 59: 1338
20 Shimamoto A, Furuya Y, Abe H. Effect of fatigue crack propagation in the shape memory alloy fiber reinforced smart composite [J]. Key Eng. Mater., 2007, 334-335: 1093
21 Aoki T, Shimamoto A. Active vibration control using cantilever beam of smart matrix composite with embedded shape memory alloy [J]. Key Eng. Mater., 2004, 270-273: 2187
22 Zheng Y J, Cui L S, Schrooten J. Basic design guidelines for SMA/epoxy smart composites [J]. Mater. Sci. Eng., 2005, A390: 139
23 Jiang D Q, Cui L S, Zheng Y J, et al. Constrained martensitic transformation in an in situ lamella TiNi/NbTi shape memory composite [J]. Mater. Sci. Eng., 2009, A515: 131
24 Tsoi K A, Stalmans R, Schrooten J. Transformational behaviour of constrained shape memory alloys [J]. Acta Mater., 2002, 50: 3535
25 Piao M, Miyazaki S, Otsuka K, et al. Effects of Nb addition on the microstructure of Ti-Ni alloys [J]. Mater. Trans., JIM, 1992, 33: 337
26 Jiang D Q, Jiang J, Shi X B, et al. Constrained martensitic transformation in nanocrystalline TiNi/NbTi shape memory composites [J]. J. Alloys Compd., 2011, 577(suppl.1): S749
27 Hao S J, Cui L S, Wang Y D, et al. The ultrahigh mechanical energy-absorption capability evidenced in a high-strength NbTi/NiTi nanocomposite [J]. Appl. Phys. Lett., 2011, 99: 024102
28 Hao S J, Cui L S, Shao Y, et al. In situ X-ray diffraction study of deformation behavior in a Fe/NiTi composite [J]. Appl. Phys. Lett., 2012, 101: 221904.
29 Hao S J, Cui L S, Jiang D Q, et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength [J]. Science, 2013, 339: 1191
30 Wang S, Cui L S, Hao S J, et al. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix [J]. Sci. Rep., 2014, 4: 6753
31 Liu Z Y, Cui L S, Liu Y N, et al. Influence of internal stress coupling on the deformation behavior of NiTi-Nb nanowire composites [J]. Scr. Mater., 2014, 77: 75
32 Liu Z Y, Liu Y N, Jiang D Q, et al. Local strain matching between Nb nanowires and a phase transforming NiTi matrix in an in-situ composite [J]. Mater. Sci. Eng., 2014, A610: 6
33 Cui L S, Jiang D Q. Progress in high performance nanocomposites based on a strategy of strain matching [J]. Acta Metall. Sin., 2019, 55: 45
33 崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展 [J]. 金属学报, 2019, 55: 45
34 Zhang X D, Zong H X, Cui L S, et al. Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites [J]. Sci. Rep., 2017, 7: 46360
35 Shaw J A, Kyriakides S. On the nucleation and propagation of phase transformation fronts in a NiTi alloy [J]. Acta Mater., 1997, 45: 683
[1] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[2] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[3] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[4] 叶俊杰, 贺志荣, 张坤刚, 杜雨青. 时效对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响[J]. 金属学报, 2021, 57(6): 717-724.
[5] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[6] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
[7] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[8] 郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.
[9] 崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展[J]. 金属学报, 2019, 55(1): 45-58.
[10] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 杜雨青, 冀荣耀. 激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为[J]. 金属学报, 2018, 54(8): 1157-1164.
[11] 余滨杉,王社良,杨涛,樊禹江. 基于遗传算法优化的SMABP神经网络本构模型[J]. 金属学报, 2017, 53(2): 248-256.
[12] 白静,李泽,万震,赵骧. Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究[J]. 金属学报, 2017, 53(1): 83-89.
[13] 宋鹏程,柳文波,陈磊,张弛,杨志刚. 形状记忆合金Au30Cu25Zn45中热弹性马氏体相变的相场模拟*[J]. 金属学报, 2016, 52(8): 1000-1008.
[14] 李哲,徐琛,徐坤,王豪,张元磊,敬超. Ni50-xCoxMn39Sn11 (x=0, 2, 4, 6) Heusler合金的马氏体相变和应变行为研究*[J]. 金属学报, 2015, 51(8): 1010-1016.
[15] 张成燕, 宋帆, 王珊玲, 彭华备, 文玉华. Mn含量对Fe-Mn-Si-Cr-Ni合金记忆效应的影响机制*[J]. 金属学报, 2015, 51(2): 201-208.