Please wait a minute...
金属学报  2019, Vol. 55 Issue (3): 417-426    DOI: 10.11900/0412.1961.2018.00218
  本期目录 | 过刊浏览 |
高合金化GH4065镍基变形高温合金点状偏析研究
王资兴1,2,黄烁3,张北江3,王磊1(),赵光普3
1. 东北大学材料各向异性与织构教育部重点实验室 沈阳 110819
2. 宝山钢铁股份有限公司研究院 上海 201900
3. 钢铁研究总院高温材料研究所 北京 100081
Study on Freckle of a High-Alloyed GH4065 Nickel Base Wrought Superalloy
Zixing WANG1,2,Shuo HUANG3,Beijiang ZHANG3,Lei WANG1(),Guangpu ZHAO3
1. Key Lab for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
2. Research Institute, Baoshan Iron & Steel Co Ltd, Shanghai 201900, China
3. High Temperature Materials Research Division, Central Iron & Steel Research Institute, Beijing 100081, China
引用本文:

王资兴,黄烁,张北江,王磊,赵光普. 高合金化GH4065镍基变形高温合金点状偏析研究[J]. 金属学报, 2019, 55(3): 417-426.
Zixing WANG, Shuo HUANG, Beijiang ZHANG, Lei WANG, Guangpu ZHAO. Study on Freckle of a High-Alloyed GH4065 Nickel Base Wrought Superalloy[J]. Acta Metall Sin, 2019, 55(3): 417-426.

全文: PDF(32277 KB)   HTML
摘要: 

以真空感应熔炼+电渣重熔+真空自耗重熔三联冶炼GH4065高合金化镍基变形高温合金棒材(直径280 mm)为对象,系统研究了该合金点状偏析的低倍组织、元素分布、第二相及晶粒形貌,分析了典型溶质元素对点状偏析行为的影响,探讨点状偏析的形成规律与机制及控制思路。结果表明,GH4065合金点状偏析主要源于枝晶间富Ti、Nb等元素的熔体密度较小冲破枝晶臂流动形成的通道偏析;锻造后生成较多的板条状η相、块状M3B2型硼化物与MC型碳化物。热力学相计算亦证实了点状偏析区较正常组织区域更容易生成η相、M3B2MC。热处理后,与正常组织区域相比,点状偏析中仍存在板条状η相,一次γ′相的尺寸和数量明显增加,二次γ′相尺寸和形貌基本相同但数量减少。分析发现,由于点状偏析区的成分变化使得γ′相回溶温度升高,导致锻造中粗大γ′相阻碍再结晶长大,点状偏析区晶粒尺寸小于正常组织区域。采取前道次冶炼精细化控制、释放电极残余应力、适度降低真空自耗重熔熔化速率、加强真空自耗重熔冷却等措施,可以有效降低点状偏析的形成倾向。

关键词 镍基合金GH4065合金点状偏析密度差控制方法    
Abstract

GH4065 alloy is a new type of high-alloyed wrought superalloy, in which freckle defect is extremely prone to form in large ingot. In the present research, the freckle of GH4065 alloy bar with the diameter of 280 mm produced by vacuum induction melting (VIM)+electroslag remelting (ESR)+vacuum arc remelting (VAR) triple smelting was studied. The macrostructure, secondary phases and grain structure of the freckle were investigated, the influences of solute elements on the freckle were analyzed, and both the mechanism and control methods were also discussed. The results show that the freckle in GH4065 alloy is caused by channel segregation with the low-density Ti and Nb-rich melt flows. Additionally, lots of lath-like η-phases, block M3B2 borides and MC carbides are formed in the forged condition. It is confirmed by the thermodynamic calculations that the η-phases, M3B2 borides and MC carbides are much easier forming in the freckle than that in matrix. After heat treatment, compared with matrix, the lathy η-phases are still existed in the freckle; the size and quantity of primary γ′ phases increase significantly while the size and morphology of the secondary γ′ phase are basically identical, only with less quantity. It has been found that due to the high content of γ′ phase, the γ′ dissolution temperature in the freckle is higher than that in the matrix. This induces an impeded recrystallization process caused by the coarsened γ′ phases during forging process and the grain size of the freckle region is significantly smaller than that of matrix. Based on this study, the formation of freckle can be effectively controlled by meticulous controlling of the previous smelting process, releasing of electrode residual stress, suitably reducing VAR melting rate, and accelerating VAR cooling.

Key wordsnickel-base alloy    GH4065 alloy    freckle    density difference    control method
收稿日期: 2018-05-22     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金项目(U1708253)
作者简介: 王资兴,1981年生,高级工程师,博士生
图1  GH4065合金点偏形貌
Element regionAlTiNbCrCoMoWBCNi
Freckle1.936.671.6115.5912.694.133.360.0500.062Bal.
Matrix2.023.640.7616.4613.074.094.120.0150.015Bal.
Ratio (freckle/matrix)0.961.832.120.950.971.010.823.334.13-
表1  GH4065合金点偏缺陷EPMA元素定量分析
图2  GH4065合金点偏区BSE像及EPMA线扫描分析
图3  GH4065合金点偏区第二相BSE像及EPMA面扫描结果
MorphologyAlTiNbCrCoMoWBCNiPhase
Block0.1037.2034.710.720.794.406.011.4712.402.20MC
Block0.104.183.2319.742.3238.2022.118.031.033.06M3B2
Lath-like2.4212.102.093.628.681.962.650.520.8167.97η
Particle4.1811.691.163.287.780.951.630.430.9269.97γ
表2  点偏区域第二相EPMA分析结果
图4  GH4065合金点偏中典型碳化物与硼化物的TEM像
图5  GH4065合金点偏区域与正常区域的锻态及热处理态典型强化相SEM像
图6  铸态和热处理态GH4065合金点偏EBSD晶界重构图
图7  GH4065合金点偏晶粒取向差分布统计图
图8  GH4065点偏锻态与热处理态的EBSD分析
图9  GH4065合金凝固过程中元素分配规律
图10  GH4065合金正常组织区域与点偏区的密度比较
图11  直径508 mm GH4065合金真空自耗重熔(VAR)铸锭低倍组织
图12  GH4065铸锭枝晶组织
PhasePositionSolidificationThermodynamic
Precipitated beginning Tem. / ℃Mass fraction / %Solidus Tem. / ℃Mass fraction / %
γFreckle1294.8Bal.1294.8Bal.
Matrix1350.5Bal.1350.5Bal.
γFreckle1160.039.01134.140.8
Matrix1100.930.01108.638.3
ηFreckle1220.08.81215.217.7
Matrix1196.21.3-0
M2B3Freckle1150.00.261112.80.62
Matrix1178.20.101098.10.18
MCFreckle1282.10.371282.30.41
Matrix1265.00.0741272.70.081
表3  GH4065合金点偏凝固过程与热力学平衡状态的第二相热力学统计
[1] Tian S F, Zhang G Q, Li Z, et al. The disk superalloys and disk manufacturing technologies for advanced aero engine [J]. J. Aeron. Mater., 2003, 23(suppl.): 233
[1] 田世藩, 张国庆, 李 周等. 先进航空发动机涡轮盘合金及涡轮盘制造 [J]. 航空材料学报, 2003, 23(增刊):233)
[2] Devaux A, Georges E, Héritier P. Development of new C&W superalloys for high temperature disk applications [J]. Adv. Mater. Res., 2011, 278: 405
[3] Jiang H F. Requirements and forecast of turbine disk materials [J]. Gas Turb. Exp. Res., 2002, 15(4): 1
[3] 江和甫. 对涡轮盘材料的需求及展望 [J]. 燃气涡轮试验与研究, 2002, 15(4): 1)
[4] Wang X D, Wang H C. Improved development superalloys, promote the aero-engine development [A]. The Thirteenth Session of the Annual China Superalloys Conference [C]. Beijing: Metallurgical Industry Press, 2015: 3
[4] 王旭东, 王海川. 改进发展高温合金, 推动航空发动机研制 [A]. 第十三届中国高温合金年会论文集 [C]. 北京: 冶金工业出版社, 2015: 3
[5] Williams J C, Starke E A Jr. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
[6] Zhang B J, Zhao G P, Zhang W Y, et al. Investigation of high performance disc alloy GH4065 and associated advanced processing techniques [J]. Acta Metall. Sin., 2015, 51: 1227
[6] 张北江, 赵光普, 张文云等. 高性能涡轮盘材料GH4065及其先进制备技术研究 [J]. 金属学报, 2015, 51: 1227
[7] Du J H, Zhao G P, Deng Q, et al. Development of wrought superalloy in China [J]. J. Aeron. Mater., 2016, 36(3): 27
[7] 杜金辉, 赵光普, 邓 群等. 中国变形高温合金研制进展 [J]. 航空材料学报, 2016, 36(3): 27)
[8] Donachie M J, Donachie S J. Superalloys: A Technical Guide [M]. 2nd Ed., Materials Park, OH: ASM International, 2002: 41
[9] Dong J X, Zhang M C, Zeng Y P. Freckle formation mechanism and its criterion [J]. Ordn. Mater. Sci. Eng., 2005, 28(1): 1
[9] 董建新, 张麦仓, 曾燕屏. "黑斑"形成机理及判据 [J]. 兵器材料科学与工程, 2005, 28(1): 1)
[10] Zhong Z Y, Zhuang J Y. Development of several important problems on producing technologies of wrought superalloy [J]. J. Iron Steel Res., 2003, 15(7): 1
[10] 仲增墉, 庄景云. 变形高温合金生产工艺中几个重要问题的研究和进展 [J]. 钢铁研究学报, 2003, 15(7): 1)
[11] Auburtin P, Wang T, Cockcroft S L, et al. Freckle formation and freckle criterion in superalloy castings [J]. Metall. Mater. Trans., 2000, 31B: 801
[12] Genereux D P, Borg A C. Characterization of freckles in a high strength wrought nickel superalloy [A]. Superalloys2000 [C]. Pittsburgh: TMS, 2000: 19
[13] Dai P C, Wei Z G, Wang Z X, et al. The microstructure analysis and formation mechanism research for freckle defect of a Ni-based superalloy [J]. Bao-Steel Technol., 2015, (5): 49
[13] 代朋超, 魏志刚, 王资兴等. 一种镍基高温合金黑斑缺陷的组织分析及形成机理研究 [J]. 宝钢技术, 2015, (5): 49)
[14] Dong J X, Zhang M C, Zeng Y P. Microstructure behavior and freckle characteristics for GH706 superalloy [J]. Rare Met. Mater. Eng., 2006, 35: 176
[14] 董建新, 张麦仓, 曾燕屏. Inconel 706合金宏观偏析"黑斑"的形成特征及组织行为 [J]. 稀有金属材料与工程, 2006, 35: 176
[15] Van Den Avyle J A, Brooks J A, Powell A C. Reducing defects in remelting processes for high-performance alloys [J]. JOM, 1998, 50(3): 22
[16] Auburtin P, Cockcroft S L, Mitchell A. Liquid density inversions during the solidification of superalloys and their relationship to freckle formation in castings [A]. Superalloy1996 [C]. Pittsburgh: TMS, 1996: 443
[17] Schneider M C, Gu J P, Beckermann C, et al. Modeling of micro- and macrosegregation and freckle formation in single-crystal nickel-base superalloy directional solidification [J]. Metall. Mater. Trans., 1997, 28A: 1517
[18] Auburtin P, Cockcroft S L, Mitchell A, et al. Freckle formation in superalloys [A]. Superalloys2000 [C]. Pittsburgh: TMS, 2000: 255
[19] Han Z Q, Liu B C. Numerical simulation on channel segregation in vertically unidirectional solidification process [J]. Acta Metall. Sin., 2003, 39: 140
[19] 韩志强, 柳百成. 垂直定向凝固条件下通道偏析形成过程的数值模拟 [J]. 金属学报, 2003, 39: 140
[20] Zhang B J, Zhao G P, Zhang W Y, et al. Deformation mechanisms and microstructural evolution of γ+γ′ duplex aggregates generated during thermomechanical processing of nickel-base superalloys [A]. Superalloys 2016 [C]. Pittsburgh: TMS, 2016: 487
[21] Wlodek S T, Kelly M, Alden D A. The structure of René 88DT [A]. Superalloys 1996 [C]. Pittsburgh: TMS, 1996: 129
[22] Heaney J, Lasonde M, Powell A, et al. Development of a new cast and wrought alloy (René 65) for high temperature disk applications [A]. 8th International Symposium on Superalloy 718 and Derivatives [C]. Pittsburgh: TMS, 2014: 67
[23] Schafrik R E. Materials for a non-steady-state world [J]. Metall. Mater. Trans., 2016, 47A: 2539
[24] Crozet C, Devaux A, Forestier R, et al. Effect of ingot size on microstructure and properties of the new advanced AD730TM superalloy [A]. Superalloys 2016 [C]. Pittsburgh: TMS, 2016: 437
[25] Moyer J M, Jackman L A, Adasczik C B, et al. Advances in triple melting [A]. Superalloys 718, 625, 706 and Various Derivatives [C]. Pittsburgh: TMS, 1994: 39
[1] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[2] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[3] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[4] 张壮, 李海洋, 周蕾, 刘华松, 唐海燕, 张家泉. 齿轮钢铸态点状偏析及其在热轧棒材中的演变[J]. 金属学报, 2021, 57(10): 1281-1290.
[5] 余磊, 曹睿. 镍基合金焊接裂纹研究现状[J]. 金属学报, 2021, 57(1): 16-28.
[6] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[7] 李克俭, 张宇, 蔡志鹏. 异种金属焊接接头在热-力耦合作用下的断裂位置转移机理[J]. 金属学报, 2020, 56(11): 1463-1473.
[8] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[9] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[10] 韦康, 张麦仓, 谢锡善. 超超临界电站用镍基合金热加工过程的再结晶机理[J]. 金属学报, 2017, 53(12): 1611-1619.
[11] 欧美琼,刘扬,查向东,马颖澈,程乐明,刘奎. 一种新型镍基合金在超临界多种离子共存环境下的腐蚀行为*[J]. 金属学报, 2016, 52(12): 1557-1564.
[12] 谢君,于金江,孙晓峰,金涛,杨彦红. 温度对高W含量K416B镍基合金拉伸行为的影响*[J]. 金属学报, 2015, 51(8): 943-950.
[13] 谢君, 于金江, 孙晓峰, 金涛, 孙元. 高钨K416B铸造镍基合金高温蠕变期间碳化物演化行为[J]. 金属学报, 2015, 51(4): 458-464.
[14] 谢君,田素贵,刘姣,周晓明,苏勇. FGH95粉末镍基合金蠕变期间位错网的形成与分析[J]. 金属学报, 2013, 49(7): 838-844.
[15] 张姝,田素贵,于慧臣,于莉丽,于兴福. [111]取向镍基单晶合金在蠕变期间组织演化的有限元分析[J]. 金属学报, 2012, 48(5): 561-568.