Please wait a minute...
金属学报  2015, Vol. 51 Issue (4): 458-464    DOI: 10.11900/0412.1961.2014.00543
  本期目录 | 过刊浏览 |
高钨K416B铸造镍基合金高温蠕变期间碳化物演化行为
谢君(), 于金江, 孙晓峰, 金涛, 孙元
中国科学院金属研究所, 沈阳 110016
CARBIDE EVOLUTION BEHAVIOR OF K416B AS-CAST Ni-BASED SUPERALLOY WITH HIGH W CONTENT DURING HIGH TEMPERATURE CREEP
XIE Jun(), YU Jinjiang, SUN Xiaofeng, JIN Tao, SUN Yuan
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

谢君, 于金江, 孙晓峰, 金涛, 孙元. 高钨K416B铸造镍基合金高温蠕变期间碳化物演化行为[J]. 金属学报, 2015, 51(4): 458-464.
Jun XIE, Jinjiang YU, Xiaofeng SUN, Tao JIN, Yuan SUN. CARBIDE EVOLUTION BEHAVIOR OF K416B AS-CAST Ni-BASED SUPERALLOY WITH HIGH W CONTENT DURING HIGH TEMPERATURE CREEP[J]. Acta Metall Sin, 2015, 51(4): 458-464.

全文: PDF(2292 KB)   HTML
摘要: 

通过蠕变性能测试和组织形貌观察, 研究了高钨K416B镍基合金高温蠕变期间析出相的演化行为. 结果表明, 铸态合金中g '相的尺寸不均匀, 条状MC碳化物在枝晶间区域呈汉字型分布; 在施加应力的高温蠕变期间, 细小M6C碳化物可在形变基体中不连续析出, 热力学分析认为: 在应力诱导作用下, 元素C偏聚在应力集中处, 与W等碳化物形成元素结合, 促使细小M6C相自基体中析出; 同时, 条状MC碳化物表面形成沟槽, 并逐渐分解蜕变成粒状M6C相, 其中, 在条状MC相表面形成的附加应力是促使MC相不断溶解和发生球化的主要原因.

关键词 K416B镍基合金蠕变碳化物演化热力学分析    
Abstract

As-cast Ni-based superalloys with high W content are used extensively in the turbine vane of aero-engine due to their good heat resistance and temperature capability. During high temperature service, the creep deformations and microstructure evolution are occurred in the using materials, and the creep behavior mainly depends on their chemical composition and microstructure, such as size, distribution and morphology of g ' phase and carbides. Thereinto, the mophologies of carbide phases are closely related to creep resistance of the alloy. Generally, the carbide particles displaying dispersive distribution may enhance the creep resistance of the alloy, while the carbide with continuous morphologies distributed in the boundaries, they may provide easy paths for crack propagation and degrade the mechanical properties of the alloy. Besides the creep life of the alloy also depends on the microstructure evolution under high temperature. But the evolution mechanism of carbides in K416B superalloy during creep is still unclear up to now. For this reason, by means of creep property measurement and microstructure observation, the evolution behavior of precipitates in K416B Ni-based superalloy with high W content during high temperature creep has been investigated. The results show that the size of g ' phase is inhomogeneous in the as-cast alloy, and the stripe MC-carbide distribute in the inter-dendrite regions displaying Chinese structures. During high temperature creep applied stress, fine M6C carbide discontinuously precipitate in the deformed g matrix. The thermodynamics analysis indicates that the carbon element segregates in the regions of stress concentration and combines with carbide-forming elements W etc, which promoted the fine M6C carbide to precipitate from the g matrix. At the same time, the grooves are formed on the surface of stripe MC carbide, and then gradually decomposed and transformed into M6C particles. Thereinto, the additional press formed in the surface of stripe MC carbide is the main factor to promote the MC phase continuous dissolution and spheroidizing.

Key wordsK416B Ni-based superalloy    creep    carbide evolution    thermodynamics analysis
    
ZTFLH:  TG132.3  
基金资助:* 国家重点基础研究发展计划项目2010CB631200和2010CB631206, 以及国家自然科学基金项目50931004资助
作者简介: null

谢 君, 男, 1986年生, 博士

图1  K416B合金在1000 ℃施加150 MPa应力下的蠕变曲线
图2  铸态K416B合金的SEM像
图3  在1000 ℃施加150 MPa应力下, K416B合金蠕变不同时间后的SEM像
图4  在1000 ℃施加150 MPa应力下, K416B合金中的长条碳化物蠕变不同时间的SEM像
图5  在1000 ℃施加150 MPa应力下, K416B合金中的长条状碳化物蠕变不同时间的TEM像
图6  蠕变断裂K416B合金的TEM像
图7  蠕变期间条状MC相熔断示意图
[1] Liu Y, Hu R, Li J S, Kou H C, Li H W, Chang H, Fu H Z. Mater Sci Eng, 2009; A508: 141
[2] Kim I S, Choi B G, Hong H U, Do J, Jo C Y. Mater Sci Eng, 2014; A593: 55
[3] Zhang G Q. Acta Metall Sin (Engl Lett), 2005; 18: 55
[4] Yang Y H, Yu J J, Sun X F, Jin T, Guan H R, Hu Z Q. Mater Des, 2012; 36: 699
[5] Tang B, Jiang L, Hu R, Li Q. Mater Charact, 2013; 78: 144
[6] Zhen Y R, Xie J Z. J Aeronaut Mater, 2009; 29(6): 1
[6] (郑运荣, 谢济洲. 航空材料学报, 2009; 29(6): 1)
[7] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 2275
[8] Hou J S, Guo J T, Wu Y X, Zhou L Z, Ye H Q. Mater Sci Eng, 2010; A527: 1548
[9] Zheng L, Gu C Q, Zeng Q, Hou S E. J Aeronaut Mater, 2004; 24(1): 17
[9] (郑 亮, 谷臣清, 曾 强, 侯淑娥. 航空材料学报, 2004; 24(1): 17)
[10] He L Z, Sun X F, Zheng Q, Hou G C, Zhang C Z, Guan H R, Hu Z Q. Mater Eng, 2004; (2): 40
[10] (何立子, 孙晓峰, 郑 启, 侯贵臣, 张承忠, 管恒荣, 胡壮麒. 材料工程, 2004; (2): 40)
[11] Yuan C, Sun X F, Yin F S, Guan H R, Hu Z Q, Zheng Q, Yu Y. J Mater Sci Technol, 2001; 17: 425
[12] Bai G H, Li J S, Hu R, Zhang T B, Kou H C, Fu H Z. Mater Sci Eng, 2011; A528: 2339
[13] Yang J X, Zheng Q, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2007; A465, 100
[14] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Sci Forum, 2007; 546-549: 1301
[15] Yang J X, Sun Y, Jin T, Sun X F, Hu Z Q. Acta Metall Sin, 2014; 50: 839
[15] (杨金侠, 孙 元, 金 涛, 孙晓峰, 胡壮麒. 金属学报, 2014; 50: 839)
[16] Xiao X, Zeng C, Hou J S, Qin X Z, Guo J T, Zhou L Z. Acta Metall Sin, 2014; 50: 1031
[16] (肖 璇, 曾 超, 侯介山, 秦学智, 郭建亭, 周兰章. 金属学报, 2014; 50: 1031
[17] Wang L, Wang S, Song X, Liu Y, Xu G H. Int J Fatigue, 2014; 62: 210
[18] Yang J X, Zheng Q, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2006; A429: 341
[19] Seo S M, Kim I S, Lee J H, Jo C Y, Miyahara H, Ogi K. J Met Sci Technol, 2008; 24: 110
[20] Mats H,translated by Lai H Y,Liu G X. Alloy Diffusion and Thermodynamic. Beijing: Metallurgical Industry Press, 1984: 103
[20] (Mats H 著,赖和怡,刘国勋 译. 合金扩散和热力学. 北京: 冶金工业出版社, 1984: 103)
[21] Mats H,translated by Li Q B,Wang X C. Diffusion Controlled Reactions in Alloy and Thermodynamic of Alloy. Shenyang: Liao-ning Science and Technology Press, 1984: 204
[21] (Mats H著,李清斌,王晓春 译. 合金中的扩散相变与合金热力学. 沈阳: 辽宁科学技术出版社, 1984: 204)
[22] Lvov G, Levit V I, Kaufman M J. Metall Mater Trans, 2004; 35A: 1669
[23] Mao W M,Zhu J C,Li J,Long Y,Fan Q C. The Structure and Properties of Metallic Materials. Beijing: Tsinghua University Press, 2008: 186
[23] (毛卫民,朱景川,郦 剑,龙 毅,范群成. 金属材料结构与性能. 北京: 清华大学出版社, 2008: 186)
[24] Tian S G, Wang M G, Li T, Qian B J, Xie J. Mater Sci Eng, 2010; A527: 5444
[25] Xie J, Tian S G, Zhou X M, Yu X F, Wang W X. Mater Sci Eng, 2012; A538: 306
[26] He L Z, Zheng Q, Sun X F, Guan H R, Hu Z Q, Tieu A K, Lu C, Zhu H T. Metall Mater Trans, 2005; 36A: 2385
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[5] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[6] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[7] 杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
[8] 张倪侦, 马昕迪, 耿川, 穆永坤, 孙康, 贾延东, 黄波, 王刚. Ag元素添加对Cu-Zr-Al基金属玻璃纳米压痕行为的影响[J]. 金属学报, 2021, 57(4): 567-574.
[9] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[10] 郭倩颖, 李彦默, 陈斌, 丁然, 余黎明, 刘永长. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57(1): 82-94.
[11] 刘天, 罗锐, 程晓农, 郑琦, 陈乐利, 王茜. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56(11): 1452-1462.
[12] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[13] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[14] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[15] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.